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The usual picture of spacetime consists of a continuous manifold, together with a metric of Lorentzian
signature which imposes a causal structure. We consider a model in which spacetime consists of a
discrete set of points taken at random from a manifold, with only the causal structure remaining. Using
only this structure, we show how to construct a metric, how to define the eff'ective dimension, and how
such quantities may depend on the scale of measurement. We discuss possible desirable features of the
model.

PACS numbers: 04.20.Cv, 02.90.+p, 04.60.+n

Spacetime is conventionally regarded as a pseudo-
Riemannian manifold which provides an arena for the
interaction of fundamental particles and fields. Via gen-
eral relativity, a good low-energy theory of gravity, we
also have a picture of spacetime as a dynamical object,
distorting according to its energy content, and thus in-
teracting with the matter fields it contains. Unfortunate-
ly, such a picture has proved problematic to the incor-
poration of quantum theory. Many problems arise from
attempting to probe behavior at very small scales, scales
at which it is generally believed that "established" phys-
ics does not hold. One obvious mean of circumventing
such difticulties is to assume that there does indeed exist
a physical cutoff, by making spacetime discrete. There
were some early attempts at discretization by Das, ' who
replaced the continuous manifold by a regular lattice of
points in spacetime. However, this approach has the ma-
jor disadvantage that the resulting models are not
Lorentz invariant, and therefore are not suitable for in-
corporating gravity, which has local Lorentz invariance
as a symmetry. A more fruitful area of study has been
that of Regge calculus, although the discrete Regge
tesselation is still special in that it carries over certain
structures (such as dimension, measure, etc. ) from its
parent manifold. We, on the other hand, are interested
in calculating the actual properties of the discrete struc-
ture, and relating these to the analogous continuous ones.

In this Letter, we examine a class of discrete space-
times recently proposed by Bombelli et al. : causal sets.
We consider such a causal set as the fundamental
description of spacetime, and examine what physical
properties one can derive directly from it. As we will il-
lustrate, the lack of continuity means that we need to
take great care in choosing quantities that really do mea-
sure something of physical interest. Also, not surprising-
ly, the discreteness introduces phenomena akin to the
"uncertainties" of quantum physics. We begin by re-
viewing causal sets, before setting up our definitions of

structure on the set. We show how to define timelike
distance, geodesics, and dimension of the set, as well as
discussing how this dimension varies according to scale
and measurement of spacelike distance and velocities.
We will also report on recent mathematical results paral-
leling this work. We conclude with some remarks on the
future of this line of study.

The fundamental feature of a spacetime manifold is
the notion of time, or timelike intervals; time is a pre-
ferred direction in the manifold. The causal structure of
a manifold determines the metric structure up to a local
conformal factor, " so that given a causal structure, we
have a good idea what manifold we are dealing with.
Causality is an example of what is known mathematical-
ly as a partial order. A partial order on a set X is a rela-
tion & which satisfies transitivity, i.e.,

x&y, y&z x&z
and such that x &x is forbidden. The set X, together
with the partial order &, is known as a partially ordered
set, or poset. Thus a spacetime, with the partial ordering
defined by causality, is an example of a poset. Partially
ordered sets are studied in their own right by mathemati-
cians, although a general poset has far less structure
than a spacetime manifold.

We must first discuss what we mean by a discretiza-
tion of spacetime. We have already mentioned that a
regular lattice model is anisotropic. One way of avoiding
the phenomenon of a preferred direction is to take a col-
lection of points distributed at random in the manifold so
that in each finite region there are a finite number of
points, and the average number of points in a region is
proportional to the volume of that region. The causal re-
lation imposes a partial order on this discrete set of
points, so we have a random partial order as the basis of
a model of spacetime. Such a model has been considered
by Bombelli et al. , who named it a causal set. In any
random model of this type, it is to be expected that
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small-scale phenomena will depend on local (random)
effects, while large-scale phenomena will depend only on
the "average-case" behavior, which is essentially the be-
havior of the original manifold. Such attributes would
be in keeping with a picture of spacetime incorporating
quantum behavior. There are thus two major problems
to be considered with this model. One is the task of try-
ing to build a quantum theory upon this spacetime
framework, and the other, more basic, is to discover the
extent to which we really do recover ordinary physics
(i.e., our continuum manifold) on the large scale. In this
paper, we take a step towards a resolution of the second
of these questions.

Bombelli et al. proposed the idea of first recovering
the manifold (approximately), with its associated volume
measure, from the partial order and then deriving the
Lorentzian metric and other properties from the mani-
fold. We adopt a slightly different approach, focusing on
the poset itself, and deriving basic physical properties of
spacetime from the poset. Implicit in this is the assump-
tion that the poset does indeed correspond with some
physical manifold, which is guaranteed if we consider the
discretization already mentioned.

Let us be more precise about the random nature of the
model we are considering. We begin with a spacetime
manifold M, with an associated causal structure (x &y
for events x and y if y is in the future light cone of x),
and a metric and volume measure on the manifold. We
will also take as fixed a parameter p, the density. We
now take a Poisson distribution with density p of points
in M: That is, we take a set X [=—X(M)] of points at
random in M, so that the number of points of X in each
subset of M which has volume 2, say, is a Poisson ran-
dom variable with mean pA. This defines the discretiza-
tion of M. The causal structure on M then induces a
partial order & on A, whereby x~ & x2 if, considered as
points in M, x] is to the past of x2. This defines our
causal set or poset.

For N a subset of M, we will write the random set
NAX as X(N). We shall be particularly interested in

the Alexandrov sets, which form a basis for the topology
on our manifold. These are the sets of the form
[x,y] =—[z:x & z & y], i.e. , all events lying between x and

y (for x and y events in X). Note that each Alexandrov
set has finite volume, so, almost surely (meaning with
probability l), there is only a finite number of points in

each X([x,y]). Note also that the set of points in M
which are null with respect to an event x has measure
zero, so almost surely there is no pair (x,y) of points
chosen for X such that y lies on the null cone of x.

Having explained the discretization process, we now
show how to construct timelike geodesics and distance.
We start by defining a chain C in a partial order as a set
of points in X such that each pair of points from C is re-
lated by &. Translated into the language of relativity, a
chain in the causal structure of a spacetime manifold is a

set of events such that every pair of events is causally
connected; in other words, for each x and y, x is either to
the past or to the future of y. If a chain C has a minimal
element x (i.e. , an element x such that every element of
C is above x) and a maximal element y, we say that C is
a chain from x to y. Now, if X(M) is our random poset
derived from a manifold M, and C is a chain from x to y
in A; then there are almost surely only a finite number of
elements in the chain, since otherwise there would be
infinitely many points in the discrete Alexandrov set
X([x,y]). Thus C is a sequence x =x~ & x2 &
& x, —] & x, =y of points in X. Now, if there is another

point z in one of the Alexandrov sets [x;,x;+i], then we
can always form a "longer" chain by adding z to C. If
there is no such point in any of the sets, then we say that
C is a maximal chain or path x to y. Given such a path,
C [=(x~,xq, . . . , x, )], we then define its length to be
s —l.

Another way of thinking about this is in terms of
nearest neighbors. If x and y are points of A with x &y
but no other point of X in [x,y], then we say that x and

y are nearest neighbors or a covering pair. A path can
then be thought of as a sequence of steps from one point
to a nearest neighbor, to its nearest neighbor, and so on,
with the length being the number of such steps in the
path. The maximal chain or path corresponds approxi-
mately to a curve in M. Clearly, however, for any given
x and y, there can be many different connecting paths
with various lengths. For instance, we could choose a
point almost on the future light cone of x and the past
light cone of y which could be a nearest neighbor of both
x and y, leading to a path of length 2. On the other
hand, we could take what intuitively would correspond to
the "straight-line" path between x and y which would
have considerably more points. This is exactly analogous
to the paths between x and y in the continuum case.
There, we define a geodesic to be the path of maximal
length between x and y, and the distance to be that
length. Here we do exactly the same: If x and y are
events in X with x &y, we define the distance d(x,y)
from x to y to be the maximum length of a path from x
to y. We then automatically have the triangle inequali-
ty, d(x,z) ~ d(x,y)+d(y, z), for if we have three points
x &y & z in X, then the longest path from x to z is cer-
tainly no shorter than the longest path from x to z via y.
We then define a geodesic from x to y to be a path of
length d(x,y). (Note that, unlike the continuum case,
there will probably be several geodesics from x to y; the
distance, however, is well defined. ) Finally, in general,
we define a geodesic in X(M) to be a chain C such that,
for every pair of points ~ and z in C, the length of the
section of C between w and z is equal to d(w, z).

Perhaps we should stress that our definition of distance
as the height of a suitable poset does not rely on the fact
that our poset is derived from a manifold. What we shall
now show is that if the poset does arise in this way, the
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distance function d(x, y) is a close approximation to the
continuum distance (times a fixed scale factor). Other-
wise, we cannot hope to extract any physical meaning
from the distance function.

For convenience, we shall assume for the moment that
our manifold M is n-dimensional Minkowski spacetime
M„. Provided the scale on which spacetime is curving is
much greater than the typical M distance between neigh-
boring points of A'(M), this should not affect our argu-
ments. Also for convenience, we may as well restrict
ourselves to a fixed Alexandrov set [x,y] of (finite)
volume V in M„. Recently, Bolloba. s and Brightwell
considered properties of random posets in the partially
ordered measure space ([x,y], & ). We highlight a spe-
cial case of one of the main results.

Theorem 12: Let [x,y] be an Alexandrov set of
volume V in M„. The length I. of a longest chain in
2'([x,y] ) satisfies L (p V) ' " m„ in probability as

pV ~, for some constant m„.
Observe that pV is the mean number of points in

[x,y], and that V'/" is proportional to the manifold dis-
tance from x to y. Therefore, this result says that the
distance between x and y becomes proportional to the
continuum distance in the limit that d(x, y) ~. This
is rather encouraging, since one property we would re-
quire of our discretization is that the "continuum limit"
(p ~) is indeed recovered. Unfortunately, the meth-
ods of Ref. 5 do not tell us anything about the rate of
convergence of L (p V) '/" to m„. Moreover, we do not
know the numerical values of m„. However, we do
know that m2 =2 and that

2 I
—I/n 2 I —I/n I ( + I ) t/n

I (1+1/n) n

for n an integer at least 3, which implies that m„2 as
n~ Qo

The fact that we do not know m„precisely is not cru-
cial; the main point is that, for large distances, the pa-
rameter L of (A', & ) is a good approximation to the
manifold distance, up to some fixed factor K. Calculat-
ing it from (4', & ) requires no knowledge of the mani-
fold from which we derived X, not even the dimension n.
Thus this result proves that the distance function we
have defined is not only internally consistent, but actual-
ly does correspond to the manifold distance in the contin-
uum limit.

One we have a good approximation to the timelike
manifold distance, we can recover in principle the crude
structure of the manifold. In particular, we should cer-
tainly be able to determine its dimension. One straight-
forward way of going about this is to count the number
N of points of A in an Alexandrov set [z,y], where
L=d(x,y) is moderately large. If M is approximately
isomorphic to M„, then we should have N=(L/m„)",
and, since m„ is known to be about 2, we should in prac-
tice have no difhculty in distinguishing M„ from M„+].

Let us now consider a slightly more subtle approach,
which eliminates the potentially awkward dependence on

m„. Given a (large) Alexandrov set [x,y], with, say, N
points of A' in it, find a point z in [x,y] such that the
minimum of the number of points of X in [x,z] and the
number of points in [x,y] is as large as possible. Denote
this number by N]. If the original manifold was M„
then the best choice for z will usually be near the point
of the manifold halfway between x and y. Therefore we
can expect that N] =2 "N, for large N. An approxima-
tion to n is thus given by Iog2(N/N~). Unfortunately,
this will not normally give an integer value even if our
manifold is just Minkowski space, so this is best inter-
preted as a measurement of the dimension rather than as
a definition.

One advantage of the above method is that it does give
sensible answers in the case when the dimension is
somehow dependent on the "scale," i.e., the size of the
original Alexandrov set [x,y]. For instance, if the space-
time manifold consists of n] "global" dimensions and a
further n2 —n] "compact" dimensions, then measuring
the dimension using a large Alexandrov set will almost
always give an answer close to n], whereas if the Alexan-
drov set [x,y] is small compared with the scale of the
compact dimensions, then a measurement of dimension
using [x,y] would give an answer of approximately n2, at
least provided that [x,y] still contains many points from
X. Measurements using Alexandrov sets of various in-
termediate sizes should, of course, indicate dimensions
between n] and n2.

Meyer has succeeded in capturing the dimension in a
slightly diAerent way, by comparing the number of
points in an Alexandrov set to the number of covering
pairs in that set. This seems to us to be rather less satis-
factory, since the number of covering pairs has no obvi-
ous interpretation in terms of the original manifold. The
approach to dimension suggested by Bombelli et al. ,
making use of the finite subposets of A; is as follows.
For each n, one takes a finite poset Y, which can be em-
bedded in M„but not in M„—]. Then the dimension of
(X, & ) is defined to be the largest n such that Y„occurs
as an induced subposet. Suitable posets were discovered
by Brightwell and Winkler. The principal advantage of
this approach is that it gives an integer value for the di-
mension. One possible drawback is that, although Y„
cannot occur in M„—t, it might occur in another
(n —I )-dimensional manifold with high curvature. Also,
if our space does have compact dimensions, it may actu-
ally not be appropriate to force the dimension to an in-

teger value. Whatever approach we use, what we are do-
ing is taking a fixed (not too large) Alexandrov set [x,y],
and using the structure of A([x,y]) to give us a mea-
surement of the dimension. If the "real" dimension de-
pends on the size of [x,y], we may well prefer the mea-
sured dimension to vary as we change the size of our
sample Alexandrov sets.
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Another aspect of the manifold structure that we
might at first expect to be able to recover is the spacelike
distance function. However, it seems that there is no
convenient way of abstracting a definition of the distance
between two spacelike separated points x and y so as to
approximate the manifold distance between x and y. Let
us give some idea of why this is so, before going to see
what we can do instead. Let x and y be two spacelike
points in X(M„), where n ~ 3, and let l denote the mani-
fold distance between x and y. Perhaps the most obvious
way of defining the distance between x and y in X(M„)
is to take the minimum, over all pairs (w;, z;) with
w; ~x, y ~z;, of d(w;, z;). We shall briefiy indicate
how this definition spectacularly fails to approximate l.
It is easy to see that we can find infinitely suitable pairs
(w;, z;) such that the manifold distance between w; and
z; is approximately l. Each interval ~w;, z;~ probably
contains about the right number of points in L; but there
is a small probability that it contains substantially fewer,
or even none, other than x and y. Since there are
infinitely many such pairs, we can almost surely find one
such that d(w;, z;) =2.

There are various ways to get around this problem, but
none are particularly natural. In our opinion, it is more
appropriate to return to the question of how one actually
measures distance. One can either use standard rods and
clocks, or standard clocks and light beams. It is the
latter approach which is clearly more adaptable to our
(causal) setup. That is, as a standard inertial observer,
we measure times and distances by sending out light rays
and measuring the time elapsed before they are returned.
This means that we need to define the distance between a
point and a given geodesic.

Now, if C is a geodesic, we say that x is related to C if
there are points w and z on C with ~ ~ x ~ z. For such
a point x, let l(x) be the highest point on C which is
below x, and u(x) be the lowest point of C which is
above x. Then we define d, (x, C) =d(l(x), u (x) )/2.
Evidently this is approximately equal to a fixed constant
times the manifold distance between x and the point of C
halfway between l(x) and u(x).

If we have two geodesics, there is now a natural way
to define the speed of one geodesic with respect to the
other; however, our "velocity" only has meaning in the
sense of an average distance traveled over a certain
length of time. Clearly, the smaller the time interval,
the less reliable this velocity is: It seems that our model
does not incorporate the idea of an instantaneous
velocity —at least not in any normal sense.

By this process, we have now set up the basic in-
gredients of special relativity for the causal set. In sum-
mary, we have taken the causal structure of a discrete

poset representing a spacetime, and we have shown how
to define distance on that causal set. We use a definition
analogous to the continuum case, and show that our
definition does indeed correspond with the continuous
metric in the continuum limit. We have also explored
the question of measurement of dimension for the set. In
a manifold there is a clear definition of dimension via the
dimension of the tangent space at a point. However, the
poset is neither a vector space nor locally equivalent to
one. It is therefore quite important that we have estab-
lished that a working definition of dimension can be con-
structed. It is also amusing that this definition depends
upon the scale of measurement.

It may seem that these definitions are merely stating
the obvious; however, that is only because one is still
thinking in terms of the poset as being embedded in an
underlying manifold. This is precisely the situation we
were trying to avoid. We have been exploring definitions
which are expressible only in terms of the poset itself,
without any reference to an underlying manifold. The
problem with abstracting spacelike distance is an excel-
lent example of a situation in which what is obvious for a
manifold is quite incorrect for a poset.

If one believes in a fundamentally discrete spacetime,
then one must know what properties this discrete set has,
and how to measure these properties. What we have
done is shown how to measure the basic physical proper-
ties of a discrete spacetime, and the extent to which they
are measurable. It may or may not be possible to con-
struct a dynamical theory on top of this structure, but we
hope that at least we have provided a starting point.
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