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Spontaneous Hexagon Formation in a Nonlinear Optical Medium with Feedback Mirror
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We present two-dimensional numerical simulations of a nonlinear optical system made of a thin slice
of Kerr material and a feedback mirror. The phase modulation induced on the light by the nonlinear
material is transformed into amplitude modulation by propagation to the mirror and back, thus forming
a feedback loop. Our simulations show that the uniform plane-wave solution deforms for sufficient pump
intensity into a nonuniform pattern of hexagonal symmetry, independently of the sign of the nonlineari-
ty, a feature which may be generic for third-order nonlinear optical systems.

PACS numbers: 42.50.Tj, 42.65.Jx, 42.65.Pc

Many research groups have focused their attention on
models where the spatial profile of the electromagnetic
field is taken into consideration and the plane-wave ap-
proximation removed. A review and extensive bibliogra-
phy of such studies has recently been published as part
of a special journal issue on transverse effects in non-
linear optics.

Here we discuss transverse effects in a rather simple
system which ought to be capable of physical realization.
Our numerical simulations in two transverse dimensions
seem to indicate that it has a very complex dynamics.

The system is a thin slice of Kerr medium irradiated
from one side by a spatially smooth beam with a feed-
back mirror a distance d away to generate a counterpro-
pagating beam in the Kerr slice, as shown in Fig. 1. In
this respect it somewhat resembles the Tucson feed-
back-mirror experimem,2 and indeed this experiment
was a motivation for the model. A further reason lay in
the counterpropagation instabilities which our group has
investigated numerically:> The description of both
diffraction and nonlinearity in the same medium leads to
computationally demanding models, so that it is of in-
terest to examine systems in which these effects are
separated, to better understand their respective roles.

One further motivation leads to perhaps the most
physical reason for studying such models. One does not
intuitively expect spatial structures to arise in defocusing
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FIG. 1. Schematic diagram of the single-slice single-mirror

model. The fluctuations in the carrier density modulate the
phase of the field (dashed line) and diffraction changes this
into amplitude modulation (solid line).

media, yet in the experiments of Giusfredi et al.? and,
less directly, in those of Akhmanov, Vorontsov, and
Ivanov* spatial structures do appear in defocusing
media. The answer lies not in the linear medium itself
but in the free-space propagation. What happens, at its
simplest in the present model, is that a smooth beam
traversing a slice of Kerr medium (which gets no spatial
structure of any kind from self-action) can be phase
modulated by an amplitude-modulated counterpropagat-
ing beam. A closed positive-feedback loop is possible
provided that the phase-modulated transmitted input
field returns from the mirror as an amplitude-modulated
beam: This is precisely what propagation does.

Consider a plane wave on which a small spatial phase
modulation has been imposed, for simplicity a simple
harmonic modulation:

E(r)=Eol1+iccos(K-1)]. (1)

The i encapsulates the 7/2 phase shift between carrier
and signal characteristic of phase modulation. As this
field propagates, however, the fact that the modulation
has a finite transverse wave vector K leads to a phase
slippage relative to the carrier, at a rate K2/2k per unit
distance, where ko is the free-space optical wave vector.
This introduces an amplitude-modulation element, and
indeed for a slippage of any odd multiple of #/2, the
phase modulation is completely converted to amplitude
modulation. Such behavior is just what is required for
the feedback loop needed for pattern formation. We fur-
ther see that there is no essential difference between a
phase advance (as in a self-focusing Kerr medium) and
retardation (as in a defocusing medium), so that pattern
formation is to be expected in both cases. Furthermore,
the rather more subtle requirement for an index grating
in a self-defocusing medium® does not apply, and Kerr
media with poor spatial resolution due to diffusion or
other causes can still give pattern formation.

The main difference between focusing and defocusing
media is due to the change of sign of &€ which introduces
an additional = phase shift; so while for a focusing medi-
um you need a n/2 phase shift for the return field to be
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in phase with the modulation (so that the pattern is sta-
tionary), for a defocusing medium you need a 37/2 phase
shift. A /2 phase shift would, in this latter case, induce
an oscillatory dynamics with a period of two round-trip
times; in the simulations presented below, however, we
consider a rather sluggish medium, which cannot
respond or oscillate on the round-trip time scale, so that
static or slowly evolving patterns dominate. The distinc-
tion between focusing and defocusing media in this case
is then primarily that patterns in the latter have higher
thresholds and smaller transverse dimensions.

All these arguments are of a rather general nature and
so should be applicable to many third-order nonlinear
optical systems. We have tested them in a simple nu-
merical model for the single-slice single-mirror system.
Consider a Kerr medium of thickness L small enough
that light transverses it in negligible time undergoing
negligible diffraction. The Kerr effect is assumed to be
due to a photoexcitation, of density »n, which relaxes to
zero with a time constant 7 and has a diffusion length /
much greater than the optical wavelength A =2n/k,. All
these hypotheses allow us to represent the slice-mirror
model as®

%=ixn1’,

98 _ B . ()
dz

—15Vin+r%+n=|1’|2+|3|2,

where y parametrizes the Kerr effect (positive for a
focusing medium, negative otherwise) and F and B are
the forward and backward fields, respectively.

Since we neglect diffraction in the Kerr medium in or-
der to simplify the model, we must ensure that this can
be justified. We assume that diffusion washes out the
wavelength-scale index grating, so that the thresholds
for the feedback-mirror instabilities can be lower than
for the counterpropagation instability,* which if above
threshold would obviously invalidate the neglect of dif-
fraction in the medium. Further, because the counter-
propagation instability involves transverse wavelength
scales shorter in the ratio (/L)' than the feedback in-
stability, it is more strongly suppressed by the transverse
diffusion of n.

The detailed modulation stability analysis of this sys-
tem has been presented elsewhere.® For the values of the
parameters we have chosen the instability is of static
type and the threshold is given by

1+9/c
ST T 3)
2R|sin(®)|
where I=|F|?, 9=K?2d/ky is the diffraction parameter,
and o=dI3/k parametrizes the diffusion in the slice.
We now give an overview of the dynamics of this mod-
el. True spatial pattern formation requires two trans-
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verse dimensions, which even in this simple system im-
poses a heavy computational demand. Our scheme simu-
lates plane-wave excitation by using equal input fields on
elements of a Cartesian grid; we have used various grid
sizes from 128x128 (most of the simulations) to 512
x 512 (as a check). At the beginning of each simulation
the equilibrium value of the carrier density is perturbed
by random noise of small amplitude. The code uses a
Fourier-transform routine to propagate the field in free
space and a hopscotch method® to integrate the equation
for the carrier density. With this scheme we were able
to run simulations including transverse diffusion and ma-
terial dynamics on a Sun SPARC station 1. In all simu-
lations the wave-vector spectra of the patterns were mon-
itored, and in all cases discussed it was well contained
within the acceptable bandwidth.

Typically, starting close to the plane-wave solution a
little above the instability threshold (i.e., with p=I,
where p is the input intensity normalized to the threshold
value), one finds spontaneous emergence of spatial mod-
ulation of the feedback field intensity. Figure 2(a)
shows a typical case for a defocusing medium. In the
first frame, the pattern is already fully two dimensional,
but with a vaguely square symmetry. This is fairly com-
mon, and probably represents the effect of the computa-
tional grid. It is already apparent that there are disloca-
tions or other imperfections in this square pattern, and as
time evolves these grow, and the pattern distorts and
reorganizes itself into the regular hexagonal pattern of
the last frame, which appears to be stable. Hexagonal
patterns also occur for self-focusing media, as shown in
Fig. 2(b). In each case the magnitude of the dominant
transverse wave vector is close to K, that with the lowest
threshold as given by Eq. (3).

Why do hexagons form and do they coexist with the
flat solution in its stable domain? To answer this ques-
tion we have performed nonlinear analysis up to third or-
der in the perturbation amplitudes for one, two and three
distinct transverse wave vectors. A single vector K|,
whose magnitude is K;, shows the expected pitchfork bi-
furcation at p=1. This “ripple pattern” is unstable
against growth of any second vector K, of magnitude K.
Further, for a 7/3 angle between K; and K,, K;=K;
— K, also has magnitude K;, and is thus resonantly ex-
cited. Such modes lead to hexagonal patterns, and we
find that the amplitude z of a hexagonal pattern obeys
(to order z?%)

p=1—%+ztan($9)+ §z2tan’($ )
— 1 22[cos?(9) +2cos(¥) —3]. 4)

The key term is the one linear in z, wholly due to the
triad coupling. It gives z(p) a finite slope at (p,z)
=(1,0), which means that the hexagonal pattern coex-
ists with the flat solution, appearing at p =1 and collaps-
ing at p <1 as a “first-order phase transition.” For



VOLUME 66, NUMBER 20

PHYSICAL REVIEW LETTERS

20 MAY 1991

FIG. 2. Feedback field intensity patterns for the model of Fig. 1; gray-scale image, white is high intensity. In each case the
modulus squared of the mirror reflectivity is R =0.9 and the scaled return trip time is 2dc/7r=0.05. (a) Hexagon formation: de-
focusing medium, ¢=0.5, p=1.05. (b) Hexagon formation: focusing medium, 6 =1.0, p=1.7. (c) “Turbulence:” focusing medi-

um, c=10.0, p=2.3.

9 =1.4839 (corresponding to yL =1 and c=10) this col-
lapse is from z==0.14 at p=0.97. Our numerical results
for these parameters are consistent with this scenario
and indeed agree with (4) within about 20% of the
values in z, which is very satisfactory in view of the fact
that on the stable branch of (4) z=0.2 and thus can
hardly be considered small.

If the input field is increased, at roughly twice the
threshold value the hexagons “melt,” often forming ap-
parently turbulent patterns, as in Fig. 2(c). We have not
yet been able to identify organizing structures for this
system, such as the quasisolitons in the ring-cavity case,’
or the vortices found in laser simulations.®® Bright spots
seem to be born and die without any obvious underlying
conservation laws. An important point about this com-
plex dynamics is that it seems to be on a time scale relat-
ed to the response time of the medium rather than opti-
cal propagation times. We do not, therefore, expect this
“turbulence” to be suppressed even in rather slow media.

These last pictures suggest that this rather simple non-
linear optical system is capable of yielding amazingly
complex space dynamics. Experimental realization re-
quires strong Kerr or Kerr-like media. The beautiful
and complex patterns observed by Arecchi et al.'® sug-
gest that photorefractive materials may be suitable, in

particular by showing that available power levels are
sufficient to generate rather complex patterns. Liquid
crystals, InSb, and Na vapor are other promising candi-
date media.

Finally, however, we must stress that investigation of
spontaneous spatial patterns in optics presents certain
problems. On the experimental side there is the need for
adequate power, preferably continuous wave, over rela-
tively large areas. This indicates a use of strong, and
therefore usually slow, nonlinearities involving significant
and maybe complex excitation dynamics. On the theo-
retical side, the problem is one of a lack of analytical
tools, leading inevitably to numerical simulations which
in this field are extremely resource hungry. To control
computer demand, one must try to capture essentials
within the simplest adequate model. Such strategies in-
clude the conception and investigation of the simplest
possible physical systems, of which we believe the Kerr
slice with feedback mirror described here to be an exam-
ple.
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FIG. 2. Feedback field intensity patterns for the model of Fig. 1; gray-scale image, white is high intensity. In each case the
modulus squared of the mirror reflectivity is R =0.9 and the scaled return trip time is 2dc/r=0.05. (a) Hexagon formation: de-
focusing medium, o=0.5, p=1.05. (b) Hexagon formation: focusing medium, o=1.0, p=1.7. (c) “Turbulence:” focusing medi-
um, c=10.0, p=2.3.



