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Classical dynamics of heavy-ion scattering is investigated in the case of a collision between a supposed
spherical nucleus, 2®Si, and a deformed one, **Mg, at energies above the Coulomb barrier. Evidence of
regular and irregular motion is found. The chaotic behavior justifies the presence of Ericson’s fluctua-
tions observed for this reaction, while the presence of regular motion embedded in the chaotic region
could be the crucial point to explain the nature of the observed isolated resonances, once the semiclassi-

cal theory is applied.

PACS numbers: 25.70.Cd, 05.45.+b

Chaotic scattering in classical dynamics has been
recognized' to be a common feature of simple noninte-
grable systems with a few degrees of freedom. This
phenomenon in unbounded systems is the counterpart of
the chaotic dynamics encountered in bounded systems.
In the simple case of potential scattering the chaotic re-
gime is characterized by deflection functions which oscil-
late on any scale of the initial boundary conditions.
These oscillations are associated with trajectories which
remain trapped for an exceedingly long time inside the
interaction region. For very long times these trajectories
approach and stay close to a set of unstable trapped or-
bits which form a fractal set in phase space, the so-called
“strange repeller,” and from which unbounded orbits
must finally escape. In this sense the deflection function
has a fractal structure. Another feature which often ap-
pears in chaotic scattering is the occurrence of “‘islands”
of regular scattering embedded also in the irregular re-
gion: Usually these islands persist on all scales of the ini-
tial conditions. Semiclassical quantization of systems
which display chaotic scattering leads to an S matrix
which belongs to the random-unitary-matrix ensemble !
and it has been argued that the corresponding fluctua-
tions in the cross sections can be a model of Ericson’s
fluctuations®3 which have been well known in nuclear re-
actions for many years.

In this paper, we show that in the classical treatment
of the collision between a deformed and a spherical nu-
cleus, chaotic scattering is present with all the above-
mentioned features, provided the following two condi-
tions are met: (i) The scattering is close to the grazing
condition and (ii) the ions are sufficiently light. In the
present treatment, other degrees of freedom different
from rotational ones are excluded and absorption is
neglected. Though the classical treatment is not fully
justified, it can shed light on the dynamics of ion-ion col-
lisions and it is the basis for the semiclassical approach.
As a typical case we take the system 28Si+2*Mg. For
simplicity we consider planar geometry. For a given to-
tal angular momentum projection Ly along an axis per-

pendicular to the reaction plane the Hamiltonian of the
system can be written as
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where m is the reduced mass, p the radial relative mo-
mentum, 7 the relative distance between the mass centers
of the two nuclei, 6 the rotational angle, Z, and Z, the
charge of the supposed spherical (*Si) and deformed
(**Mg) nucleus, Qy the intrinsic quadrupole moment of
24Mg, I the angular momentum of the rotator, J the cor-
responding moment of inertia, and P, the Legendre poly-
nomial of order 2. The ion-ion potential Uy is chosen to
be the proximity one,* which is well suited for calculat-
ing the interaction between deformed nuclei.® That is,

Un(r,0)=4nyRbD(s(0)) , 3)
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where @ is the proximity function, y is the surface ten-
sion, b =1 fm is the diffuseness parameter, R is the ra-
dius of the spherical nucleus 8Si, R,(0) is the radius
which describes the quadrupole surface of 24Mg, and ayo
is the deformation parameter. The values of the dif-
ferent parameters are reported in Table I. Our Hamil-
tonian has three degrees of freedom, i.e., the relative dis-
tance r, the polar angle ¢, and the rotational angle 6, and
two constants of motion, i.e., the total energy Ex and
the total angular momentum L.y Neglecting the 8
dependence of the full ion-ion potential, the Hamiltonian
is separable and thus integrable, because the internal an-
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TABLE I. The values used in the calculation for the surface
tension y (Ref. 4), the radii of the nuclei (Ref. 4), the defor-
mation parameter az (Ref. 6), the intrinsic quadrupole mo-
ment Qo (Ref. 6), and the moment of inertia J ( Ref. 7).

Yy R, R? Qo Jh 2
MeVfm~™2)  (fm)  (fm) ax (fm?) (MeV™hH
11.959 3.39 3.21 0.423 57 2.378

gular momentum / and the orbital one L are conserved
separately. The 6 dependence of the ion-ion potential in-
troduces a symmetry breaking, causing the conservation
of Ly only. If the perturbation caused by the 6-de-
pendent coupling term is small enough, the system is ex-
pected to be a mixed one.?

In Fig. 1 is shown the ion-ion potential for three values
of relative angular momentum. The dashed curve refers
to 6=0° while the solid one refers to 6 =90°. Integrat-
ing the equations of motion one gets the behavior shown
in Figs. 2 and 3 for the final angular momentum of the
rotator and for the final scattering angle. Because of the
above-mentioned conservation of the total angular
momentum, i.e., L(t)+1(t) =Ly, the final scattering
angle ¢ is obtained by integrating

Lig—1
¢f=f‘—tn‘;r—2‘"dt. 7

The initial angular momentum of the rotator was I; =0.
The integration was carried out starting from an ini-
tial distance of » =18 fm, up to the internal region, and
then back until the distance was again 18 fm. There was
also a time limit corresponding to Tmax =10% fm/c, in
case the trajectory was trapped inside the interaction re-
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FIG. 1. The ion-ion potential V(r,0) plus the centrifugal

term of the Hamiltonian (1) for three different values of the
relative angular momentum, L=15h, 35h, and 45h, as a
function of » and 6. The dashed curve refers to 6=0°, while
the solid one refers to 6 =90°.
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gion. Very few trajectories, however, remain trapped for
so long. There are wild fluctuations in some regions due
to irregular scattering and a smooth behavior in others.
Moreover, there are regions of regular scattering embed-
ded in the irregular one.

The large regular region beyond 60° for Ly =164
corresponds to scattering from the tail of the potential
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FIG. 2. For three different values of Ly, i.e., Lot =14h,
15A, and 164 and for E =28 MeV, the final spin of the de-
formed nucleus **Mg divided by the maximum one,
Tmax=QJIE 1), as a function of the initial values of the rota-
tion angle 6;. The initial value of the spin was I; =0A. There
is a symmetry of the reaction function around 6; =180° be-
cause of the form of Y. See text for further details.
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FIG. 3. The final scattering angle ¢, given by (7) as a func-
tion of @; for the initial relative angular momenta correspond-
ing to those of Fig. 2.

which does not depend on the angle 6. In this region the
Hamiltonian is quasi-integrable and the coupling term is
nearly zero. Increasing the coupling term, the grazing
condition is reached and symmetry breaking occurs: Our
system shows a mixed behavior of regular and chaotic
scattering. The islands of regular motion are very sensi-
tive to the ion-ion potential and with increasing incident
energy the chaotic scattering tends to disappear.

In Fig. 2 the final value of I/, never reaches the ex-
treme values =+ 7In.=+ QIE ) "2 In general it is

limited by two smaller values fixed by the shape of the
potential, which determines the apparent band of points
in the figures. Those isolated points which are outside
this band are not real final values of I: They in fact cor-
respond to trajectories trapped inside the pocket of the
potential because the time limit was reached. In order to
observe chaotic motion, the time associated with the ro-
tation of the deformed nucleus should be comparable to
the collision time. If the moment of inertia is too big,
the change in the potential due to rotation would occur
in a time too long compared to the collision time and the
motion would be regular everywhere. This is one reason
why light systems are favored. The other one is the fact
that for these systems the quantal absorption is less than
in heavier ones.

The simplest semiclassical quantization leads to the
probability

pP= );, () 2™ | (8)

where @y is essentially the action integral, including the
Maslov phase,'? and Py is the classical probability for
the kth trajectory which gives the final classical state of
the system. This treatment gives an excellent reproduc-
tion®> of the full quantal result in the case of pure
Coulomb excitation of rotational bands, provided it is
analytically extended also into the classically forbidden
region. The classical probability P, is essentially given
by the Van Vleck determinants'® if the final variables
are smooth functions of the initial boundary conditions.
As shown in Ref. 1, in the case of irregular scattering,
the averaged energy probability and the correlation func-
tion follow Ericson’s fluctuation theory®® provided the
energy interval is properly chosen.

In the past, molecular resonances were found for light
systems at energies above the Coulomb barrier.'" The
nature of these resonances has remained until now rather
obscure. In particular, for the system 28Si+ 2*Mg isolat-
ed resonances embedded into a statistical noise
(Ericson’s fluctuations) have been discovered quite re-
cently.'>'? Qualitatively the nature of these isolated res-
onances can be explained with the presence of the
above-discussed islands of regular trajectories inside the
chaotic region. For those initial conditions which give
regular scattering the system displays a quasi-integrable
dynamics and the motion takes place on invariant sur-
faces. In the case of bounded systems generalized Bohr-
Sommerfeld quantization rules inside the invariant sur-
faces give the semiclassical eigenenergies.® In the
present case of unbounded scattering dynamics, similar
considerations, applied to quasiclosed trajectories which
explore the same phase-space region many times, should
give the position of the isolated resonances. The pro-
posed explanation is an alternative to the one invoking
quasibounded quantal states, inside the pocket of a
spherical potential, which decay by tunneling, and also
can have some connection with resonances due to quan-

2583



VOLUME 66, NUMBER 20

PHYSICAL REVIEW LETTERS

20 MAY 1991

tal coupled channels. However, for a quantitative
analysis a careful study of the ion-ion potential and of
the corresponding quantal scattering problem is required.
This is beyond the aim of this paper.

Summarizing, we have shown that a classical descrip-
tion of a collision between a deformed and a spherical
nucleus sufficiently light can show regions of regular and
irregular motion around the grazing condition. This
justifies the presence of Ericson’s fluctuations and can be
crucial for explaining the nature of experimental isolated
resonances once the semiclassical theory is applied. Fur-
ther investigation concerning the semiclassical limit is
needed to reach a final conclusion. In particular, one
should consider also the quantal absorption due to nonro-
tational degrees of freedom, which, however, for light
systems should affect only the finest details of the dy-
namics.

The discussion has been restricted to planar geometry
only, but the main qualitative features should hold also
in the more general case. 2%Si is in reality a deformed
system. We expect that taking into account also the 28Si
deformation would only increase the complexity of the
dynamics without changing the qualitative chaotic be-
havior discussed. In order to investigate different sys-
tems, preliminary calculations for the scattering of
spherical 'O on the deformed 28Si nucleus have also
been performed, with results similar to those discussed
above. In Ref. 14 a restricted coupled-channel treatment
for this system has been considered. In principle, the
phenomena discussed here for rotational degrees of free-
dom could also appear when considering vibrational
ones. Some work is in progress in the latter case. It is
also interesting to investigate the connections of the ar-
guments discussed so far with the coherent fluctuations
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found in more dissipative heavy-ion reactions. '®
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