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New Tests of the Strong Equivalence Principle Using Binary-Pulsar Data
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One of the few experimental handles on the nonlinear properties of the gravitational interaction is to
test the "strong equivalence principle, " i.e. , to test whether the ratio mgravitalional/mjngrtjg[ is 1 for self-
gravitating bodies. We point out that existing observational data on the class of small-eccentricity long-
orbital-period binary pulsars already provide a limit (namely ~ms/m; —

1~ & 1.1 & 10;90% C.L.) which

goes beyond corresponding solar-system limits in probing strong-gravitational-field eAects. Possible ob-
servational ways of improving this limit are suggested.

PACS numbers: 04.80.+z, 95.30.Sf, 97.60.6b, 97.80.Fk

The equivalence principle, i.e., the property that all
neutral test masses fall with the same acceleration in an
external gravitational field, is a profoundly characteristic
feature of the gravitational interaction. It has been
verified, with a fractional precision 8a/a —10 ", by the
experiments of Roll, Krotkov, and Dicke, ' and of Bra-
ginsky and Panov, as well as, very recently, by new
Earth-based experiments motivated by the possible ex-
istence of a supplementary finite-range vector or scalar
macroscopic interaction. Moreover, a planned satellite
experiment aims at improving the precision of the test
down to a level Sa/a —10 ' . However, it was pointed
out by Nordtvedt that the laboratory-size bodies used in
such experiments possess a negligible fraction of gravita-
tional self-energy, and therefore that such experiments
indicate nothing about the equality of "gravitational, "
m~, and "inertial, "

m;, masses when including terms of
fractional order Eg/mc (where Es denotes the gravita-
tional self-energy). Nordtvedt further pointed out the
possibility to test such a stronger version of the equiva-
lence principle through the analysis of lunar-laser-rang-
ing data. This test has been performed ' and reaches
now a precision )

8'a/a
)
=B(ms/m; )

~

—2 x 10 ', sufli-
cient to put severe limits (currently ~ri~ & 0.01 at th'e 2tr
level' ) on the parameter quantifying a violation of the
strong equivalence principle of the type envisaged by
Nordtvedt: ms/m; =1+riEg/mc .

The purpose of this Letter is to point out that, in view
of the smallness of the self-gravity of planetary bodies
(e.g. , Eg/mc = —4.6x10 ' for the Earth), such solar-
system tests of the strong equivalence principle indicate
nothing about higher-order gravitational-energy contri-
butions to the ratio ms/m; for some body a:

(ms/m;), =1+8„=1+ri(Es/mc ),
+ ri'[(Es/mc'), ] '+ . (1)

To test such higher-order eff'ects one needs to consider
strongly self-gravitating bodies, such as neutron stars
[for which Es/mc ——0.15, so that the higher-order
contributions to A„ in Eq. (1), can reach a few percent].
We shall show in this Letter that presently existing
binary-pulsar data already contain important informa-
tion that puts limits on such higher-order violations of
the strong equivalence principle. The possibility that
such higher-order contributions in Eq. (1) are present (ri'
of order unity, etc. ) independently of the magnitude of
the lowest-order term (~ ri~ & 0.01) has been recently
proven by the investigation of a general class of alterna-
tive relativistic field theories of gravity, " which can
coincide with general relativity in the post-Newtonian
limit, and difI'er arbitrarily from it in the strong-field re-
gime.

In the presence of a violation of the strong equivalence
principle, Eq. (1), the equations of motion for the rela-
tive position' r=x& —x2 between, say, the pulsar (iner-
tial mass m t) and its companion (inertial mass mq) have
the form

d r/dt + QMr/r =R+F,
where M—=m]+my, 9 denotes the eff'ective gravitational
constant for the interaction between m] and m2, R de-
notes the orbital relativistic contributions [~ (v'" ""/
c) ], and F—=Ag, with d, =—ht —

A2 denoting the supple-
mentary "force" (per unit mass) due to the differential
acceleration of free fall in the gravitational field I of the
galaxy. Equation (2) has the same form as the usual
"lunar" Nordtvedt eA'ect, with the physical diff'erences
that, in our "pulsar" case, the eccentricity of the unper-
turbed Keplerian orbit is, in general, not small, the force
F is not nearly parallel to the orbital plane and is essen-
tially constant in magnitude and direction (so that we
are considering the gravitational analog of the Stark
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effect), and the basic observable quantity is not the
"range"

~
r

~
but the component of r along the line of

sight. The solution of Eq. (2) comprises both short-
period and secular effects. The short-period (i.e., with
period of the order of the orbital period Pb) effects in-

duced by F can be shown to contribute to the timing for-
mula of a binary pulsar terms of order

F&Pb/4tt c =1.75k(g~/gp) [Pb/(10 s)] x 10 s,
where & denotes the projection onto the orbital plane,
and gq the value of the galactic acceleration at the solar
circle. With such terms seeming unmeasurably small,
we conclude that it is sufhcient to study the secular ef-
fects induced by F.

Averaging over one orbital period the time derivatives
of the energy, the angular momentum, and the La-
grange-Laplace (-Runge-Lenz) vector, one finds the fol-
lowing equations for the secular evolution of the Kepleri-
an elements of a binary system:

(da/dt) =0, (de/dt) =f &&I+coRcxe, (dl/dt) =fxe.

In Eq. (3) e =—ea (eccentricity vector), I:—(1 —e ) 't c,
and f—:—', F/na, (a,b, c) being an orthonormal triad with

a along the apsidal line (towards the periastron), and c
along the orbital angular momentum, while, as usual, a
is the relative semimajor axis, e the eccentricity, and
n= 2tt/Pb =(QM—/a )' . Finally, tott denotes the aver-

age angular velocity of the relativistic advance of the
periastron, which, in a general alternative relativistic
theory of gravity reads to~ =nk, with k =or x 39M/
c a(1 —e ), the factor 7 being unity in Einstein's theory
and a functior: of m] and m2 in alternative theories.
Equations (3) show that both the shape and the spatial
orientation of the Keplerian binary ellipse slowly change
under the influence of F. In high-eccentricity binary
pulsars such as PSR 1913+16 this leads to new measur-
able effects, notably a secular change of x —= (m z/

M)a sini/c (through a change of the inclination angle i),
and a secular change of the eccentricity. However, the
time scale for these changes is —~f~

' =(0.1/4) x6.7
x IO yr, i.e., longer (as soon as A(0.18) than the
gravitational-wave damping time scale in this system.
As it has not yet been possible to measure the gravita-
tional damping effects on x and e in PSR 1913+16, ' we
must turn our attention to other kinds of binary pulsar
systems.

There exists, besides the high-mass, high-eccentricity,
small-orbital-period class of binary pulsars (of which
PSR 1913+16 is the paradigm), a class of low-com-
panion-mass, small-eccentricity, long-orbital-period
binary pulsars which turns out, surprisingly, to provide a
useful testing ground for the violation of the equivalence
principle considered here. Taking advantage of the fact
that these binary pulsars have a very small eccentricity,

we see that the evolution equations (3) essentially decou-
ple: The last equation implies that the orbital plane is
fixed, (dc/dt) = 0 (ef) =0, and then the penultimate
equation gives for e(t) a linear (vectorial) evolution
equation with constant coe%cients and a constant forcing
term. The general solution of this evolution equation can
then be written as the following vectorial superposition:

e(t) =eF+eg(t), eF —=fi/top =
2 AgiltoRna. (4)

In Eq. (4) ep(t) (general homogeneous solution) rep-
resents a usual relativistic periastron advance phenome-
non (the eccentricity vector eg turning in the orbital
plane with angular velocity top },and eF (inhomogeneous
solution) represents a constant eccentricity vector direct-
ed along the projection of the external force onto the or-
bital plane (i.e., a constant, F-induced, "polarization" of
the orbit). To make the link with the usual (lunar)
Nordtvedt eAect, one can consider the evolution equation
for the eccentricity, e=~e~, as obtained from Eqs. (3):
de/dt = (1 —e ) ' f.b. The important factor in this
equation is the presence of a slowly changing angle, say
0(t), between f and b. In the lunar case the time depen-
dence of 0 is due to the rotation of the external force f,
while in our case it is due to the relativistic rotation of
the orbit-based direction b. This argument shows direct-
ly that the limit of validity of our result, eF =f&/cog, is

that mg should be appreciably faster than coo, the angu-
lar velocity of rotation of the galaxy with which F
rotates. As one finds cop/cog = [Pb/(1364 d)] (M/
1.7Mo), this condition will be well satisfied by the
two binary pulsars that we shall consider below.

Equation (4) tells us that the observable eccentricity
vector e(t) lies on a circle of radius ~eg~, centered at eF.
If IeFI»IeRI the observed e=leF+eRI=leFI is a di-
rect estimate of (eF (, while if [eF( «(ep [, the observed
e = leF+eR I

= leR I
» leF I give»n upp«boun«o leF I

In both cases the observation of a binary pulsar system
having a very small eccentricity directly yields an upper
limit to the 4-induced polarization eF. However, this is
no longer the case if ~eF ~

= ~eR~, where a vectorial com-
pensation between eF and eR(t) could happen at the
time of observation. To get secure limits on h, let us
henceforth put ourselves in the worst case, where there
could occur, sometimes, an exact cancellation between
eF and e~(t), i.e., let us assume leFI =leRI ' We are
lucky that there exist two small-eccentricity, long-or-
bital-period, binary pulsar systems, namely, PSR 1855
+09 and PSR 1953+29, which are known to be so old'
that eR has had the time to make many turns (cozt) 557m for t & 10 yr and the least relativistic system
1953+29). We are then entitled to reason probabilisti-
cally, by considering that the position of e(t) on the cir-
cle which it describes is a random variable uniformly dis-
tributed on the circle. Let us denote by 0 [=to~(t tp)]
the angle on the eccentricity circle, by A the longitude of
the ascending node, by i the inclination of the orbital
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plane, and by X the angle between the Sun and the galac-
tic center as seen from the pulsar, and let us define
e—= (Pb/2') gc /2PQM. With this notation, the absolute
value of 6 =h,

~

—h, 2 can be expressed as

~a~ =[f; (H, n)] 'e/e,

where f; i(0, 0)—:2sin(8/2)R; q(t1 ), with

R; q(0 ) = [1 —(cosi cosX+ sini sink sin t1 ) ] 't .

(5)

Apart from 8 and 0 which are not observable (and
that we shall treat as independent random variables, uni-
formly distributed between 0 and 2'), the other quanti-
ties entering Eq. (5) are, in principle, observable in the

timing of binary pulsars. For instance, to get X and g
(galactic acceleration at the location of the pulsar) in
terms of observable quantities, we use the results of Ref.
12 expressing A. and g as functions of the galactic longi-
tude I and of i5—:(Earth-pulsar distance)/(galactic ra-
dius). In view of our probabilistic assumptions we can
define confidence levels for ~A~ ee [f(8,0)] '

by consid-
ering the probability measure of the regions of the 0-0
torus where f(0, 0) is smaller than some value fc L, de-
pending on the chosen confidence level. We shall take
90%-confidence-level regions.

Finally, we find that the observation of an (old) binary
pulsar system having a (small) observed eccentricity e
allows one to put an upper limit on ~h~ given by

~~~ & (IO/~)I;, e/e (90% C.I..),
where I; i =(2tt) 'Jo"dQ/R;i(Q) is a complete elliptic
integral of the first kind [arising when approximating
2sin(0/2) by 9 or 2' —0].

A survey of existing small-eccentricity, long-orbital-
period, binary pulsars (using Pb/e as figure of merit)
shows that the three best systems for constraining ~A~

are PSR 1855+09, PSR 1953+29, and PSR 0820+02.
We must, however, discard the latter system because its
age is unknown apart from the fact that it is much
younger than the other two, as shown by the observation
of a hot white dwarf companion. ' Concerning PSR
1855+09 the beautiful recent results of Ryba and Tay-
lor give us all the quantities we need to estimate
the right-hand side of Eq. (6): e =2.167 x 10, Pb
=1.0650676x10 s, /=42. 3', 6=(1.1 kpc)/(7. 7 kpc)
=0.143, i =88.28', m2 =0.233Mo, and M =m]+m2
=1.50Mo. Note that, as we are using these data to esti-
mate a small upper limit to h. , we are entitled to neglect
the violations of the strong equivalence principle appear-
ing in the deduction of m2 and M from the timing data,
i.e., we use general relativity to deduce the masses (we
also approximate PQ =GN, „i,„ in e). Another con-
venient feature of the class of binary pulsars we consider
is that dq((A~ (white dwarf compared to neutron star)
so that we get a direct limit on hi =h(m~) (ms/m;—1),. The limit we finally get is ~d (m i =1.27)

~

& 5.6x10 (90% C.L., PSR 1855+09 data).

Concerning PSR 1953+29 the observational results'"
are less rich because neither the masses nor the inclina-
tion is measured. However, the formation of such sys-
tems is sufficiently well understood to allow one to
deduce m2 from the observed orbital period. ' This
yields mq =0.31 ~ 0.04MO, ' or, consistently, m2
=0.30. (It is important to note that the corresponding
estimates for PSR 1855+09 have been independently
confirmed by the observations of Ryba and Taylor. ' )
We shall adopt my =0.3Mo and (based on the other ob-
servations of pulsar masses and on the fact that only a
small fraction of a solar mass is required to spin up a
millisecond pulsar ') m~ =1.4MO, so that M=1.7MO.
Then the inclination is determined from the observed
mass function. As concerns the galactic-reduced dis-
tance, B=d/Ro, we can estimate it from the results of
Damour and Taylor, ' who found a Oat recalibration
factor of 0.55, for galactic longitudes 47 & I & 70, be-
tween the distance estimates of Refs. 22 and 23. Using
d(LMT 85) =2.7 kpc for PSR 1953+29, ' and remem-
bering that Ref. 23 uses Ro=8.5 kpc, we get 6=2.7/
(0.55x8.5). Finally, the quantities we need in the case
of PSR 1953+29 are e=3.304&10, Pb =1.013896
X10 s, 3 =65 84, 6 =0 58, i =41.5, m2 =0.3Mo,
and M=1.7MO. They yield ~A(m~ =1.4)~ & l.1x10
(90% C.L., PSR 1953+29 data).

As we see from Eq. (1), this limit, with ~tl ~
& 0.01 and

~Fg/mc
~

—0.15, begins to put a (modest) constraint on
the possible presence of higher-order self-gravity terms.
Ho~ever, a precise discussion of this constraint must
take into account, within a specified class of alternative
theories, the exact physical structure of the higher-order
terms, and will be left to a separate study. ''

The final question one might address is whether there
are ways to tighten the above limits. One evident way is
to hope for the discovery of a new binary pulsar system
with a bigger value for the figure of merit: inf[Pb2, (1364
d) ]/e. Another way would be to get direct observation-
al limits on the secular variation of the eccentricity vec-
tor. Indeed, we have de/dt =tottcxett, so that a mea-
surement of (respectively, upper limit on) de/dt gives a
direct measurement of (respectively, upper limit on) eR.
If in this way one can get the information that eR/e is
smaller than about (10/tr)I; i (=3.87 for PSR 1855
+09) then we can render more secure (by making in-
dependent from probabilistic considerations), and maybe
tighten, the limits obtained above.
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