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Taming Chaotic Dynamics with Weak periodic perturbations
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The possibility of eliminating chaos in a dynamical system or of decreasing the leading Liapunov ex-
ponent by applying a weak periodic external forcing to the system is demonstrated through the example
of a periodically driven pendulum. The application of the external forcing also results in other striking
changes in the dynamics such as a stabilization of narrow subharmonic steps and the achievement of
very low winding numbers.

PACS numbers: 05.45.+b, 74.40.+k, 74.50.+r, 85.25.+Cp

The inherent irregularity of chaotic dynamics and its
strong sensitivity to perturbations may lead one to be-
lieve that such dynamics cannot be destroyed by means
of weak external forcing. Moreover, the notion that the
existence of three incommensurate frequencies in a sys-
tem can generically lead to chaos' hardly suggests that
the addition of an externally produced frequency will

have a taming eA'ect on chaotic dynamics. It is therefore
somewhat surprising that chaos can be suppressed by
external forcing. On the other hand, if such a suppres-
sion can be achieved it is highly desirable in systems of
practical importance such as lasers and electronic sys-
tems. Another example is that of particle accelerators.
Moreover, one can learn significant information from the
response of a chaotic system to external forcing. It has
been shown that near bifurcation points of dynamical
systems (e.g. , period-doubling bifurcations) the applica-
tion of external periodic forcing at some resonant fre-
quencies can cause an amplification of the periodic signal
and a shift in the bifurcation point, thus stabilizing the
periodic state. What about the response of a system in a
deep chaotic state? It turns out that here as well an
external force may have a drastic influence. For exam-
ple, it has been observed that resonant parametric per-
turbations (on the example of the Dufling-Holmes equa-
tion) can suppress chaotic behavior. Other examples are

found in Refs. 5-7. It is possible to argue that in very
narrow neighborhoods of some resonant frequencies a
chaotic system may yield to external parametric forcing.
In the case considered in Ref. 4, the small parametric
forcing is not necessarily a small perturbation on the sys-
tem [in the Duffing-Holmes equation the perturbing
term is proportional to cos(wt)x, where x is a dynami-
cal variable, and the multiplicative nature of the pertur-
bation may render the overall perturbation relatively
large]. Another means of controlling chaos has been re-
cently suggested in Ref. 8. While the latter method
seems to be eScient, it is based on a feedback mecha-
nism: One perturbs the system in a way that is related to
its position in phase space. In practical terms (applica-
bility to various practical devices and machines is men-
tioned by several authors ) one needs a fast responding
feedback system that produces an external force in

response to the system's dynamics. While we do not
presume to judge the practicality of the interesting idea
suggested in Ref. 8, it seems worthwhile to explore a
much simpler possibility, which is presented below.

We wish to find out whether a weak sinusoidal force
can eliminate chaos in a dynamical system. To this end
we choose to investigate the dynamics of a damped pen-
dulum driven by ac and dc forces of "order 1" and a
second weak ac force. This model has been studied by a
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FIG. 1. Leading Liapunov exponent X as a function of the
parameter P (see text) with G =0.7, A =0.4, I =0.905,
w =2m/25. 12, and a=0.0125. The points represent actual re-
sults and they are connected by lines to guide the eye.
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large number of investigators, partly because of its rela-
tive simplicity and partly because it serves as a good
model for the dynamics of a 3osephson junction. ' The
equation considered is

B+GB+sinB =I+2 sin(wt ) + a sin(Pwt ) .

We take 6=0.7, A =0.4, and w =0.25 [parameters for
which Eq. (1) with a =0 has been investigated be-
fore''"] and study numerically the resulting dynamics
as a function of the parameters a, P, and I.

When a=0 and I =0.905 the solution of Eq. (I) is
chaotic'' with a leading Liapunov exponent equal to
about 0.04. Consider the eAect produced by adding a
small perturbation with o. =0.0125. The leading Li-
apunov exponent X versus the value of P is presented in

Fig. l. One observes a significant reduction in the value
of X once a nonzero value of P is switched on, as well as
several ranges of values of P for which X is negative (one
of these ranges is relatively broad, 0.18~PRO.6). A
typical spectrum of the "voltage" (in the Josephson-
junction analogy) B(t) for p=0.338. . . is presented in

Fig. 2(a). The corresponding Poincare section is

presented in Fig. 2(b), where B„—=B(2trn/w) and B„
B(2trn/w ). —
It is interesting to consider the I-V characteristics of

Eq. (I), regarded as a model of the Josephson-junction
dynamics (the average voltage or winding number, V, is
the time average of B). As is known, ' '' when a=O,
the I Vcharacteristics -of the system (with 6 =0.7,
8 =0.4, w =0.25) are composed of a set of discrete steps
for which V =wn, n being an integer. There are narrow
gaps (in I) between the neighboring steps. When a
small perturbation is applied, these gaps widen and fill

up with stable states (Fig. 3 for P=1.118). The nature
of the in-gap dynamics can be elucidated on the basis of
Figs. 4(a) and 4(b). Figure 4(a) presents the phase B as
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FIG. 2. (a) Power spectrum S(w) of the voltage fluctua-
tions. The parameters are 6 =0 7, 8 =0 4, I =0 905,
w =2m/25. 12, a=0.0125, and P=0.33803. (b) Poincare sec-
tion corresponding to the system described in (a).
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FIG 3. I-V characteristics corresponding to the parameters
G =0.7, A =0.4, w =2m/25. 12, a =0.0125, and P =1.11803.
The smooth curve corresponds to a =0, i.e. , no external pertur-
bation. The dotted curve corresponds to e =0.0125 and

P =1.11803.
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FIG. 7. Instantaneous voltage 6 as a function of time for
0~ r ~ T (T =25.12). The parameters are as in Fig. 2(a).
The smooth curve corresponds to a =0, i.e. , no external pertur-
bation. The circles correspond to a=0.0125. Clearly, the two
solutions will depart at longer times. Both curves correspond to
the same initial condition (e(t =0),e(r =0)).

bations. A possible mechanism explaining this phe-
nomenon is that one of the infinite unstable limit cycles
embedded in the chaotic attractor'" may be stabilized by
the application of an external force. In Ref. 8 a pro-
cedure was suggested to stabilize a given periodic cycle.
Here we demonstrate that the system has the ability to
find an appropriate cycle, for a given external forcing.
Figure 7 shows a plot of 8 versus time for the unper-
turbed system (a =0) compared with e versus time for
the perturbed one. The closeness of the two graphs is
highly suggestive. For some values of P (or of the per-
turbing frequency) the leading Liapunov exponent is still
positive, though reduced in value. We have checked the
possibility that the initial conditions we have used were
not in the basin of attraction of the limit cycle to be sta-
bilized, by using a variety of different initial conditions.
The resulting asymptotic state seems to be the same for
all initial conditions we have used and as a result the
corresponding (positive) Liapunov exponent does not
change as well. The effect of a weak oscillatory pertur-
bation on an unstable limit cycle can be modeled by the
following recursion relation:

x„+)=(X+ef„)x„, (2)

where X & I, (f„)=0, (f„)=I (e.g. , f„=J2cosn), and
angular brackets denote the average over n. When e =0,
the fixed point x is clearly unstable, whereas for finite 6
the Liapunov exponent g, corresponding to recursion re-
lation (2), is

rI =Re(ln(k+ ef„)) .

For small e, t)=ink —e /k +O(e ). Thus, when
k Ink & e the Liapunov exponent tI is negative (when
X = I + 8, 6« 1, this condition reduces to

~ B~ ( —, e ),

i.e., x is stable. Notice that even when t. &k ink, the
forcing has an effect of reducing the Liapunov exponent,
as observed in the numerical experiments. Thus, weakly
unstable periodic solutions may be stabilized by oscilla-
tory perturbations. Resonant interactions of the kind
discussed in the literature may further affect the stability
of these cycles.

In summary, we have shown a way to reduce chaos
(i.e., the Liapunov exponent) or eliminate it altogether
even in deep chaotic states. We have found that in
parallel with this reduction one may stabilize narrow
(and high) subharmonic steps and produce solutions with
very low values of (e). Finally, we have demonstrated,
using a simple model recursion relation, how a paramet-
ric resonance' mechanism can be responsible for this
effect. Besides the practical implications of our results,
we believe they may be useful in efforts to ellucidate the
nature of the chaotic state itself.
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