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Oscillations and Waves in a Reactive Lattice-Gas Automaton
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A lattice-gas automaton model is constructed for multispecies, chemically reacting, spatially distribut-
ed systems and applied to a two-species reaction. The automaton simulations show monotone and oscil-
latory decay to the steady state as well as excitability and limit cycles. Chemical waves, such as rings
and spiral waves, and Turing patterns that arise from the bifurcation of the homogeneous state are
found. The model allows the exploration of nonequilibrium spatial structures at the mesoscopic level and
goes beyond the usual reaction-diA'usion equation descriptions.
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Nonlinear far-from-equilibrium chemically reacting
systems show many different kinds of dynamical behav-
ior. Spatially homogeneous (well-stirred) systems can
have one or many steady states, oscillate, or even exhibit
chaos. If such reactions are allowed to occur under un-
stirred conditions then the nonlinear kinetics can corn-
bine with diAusion to display an even richer structure
and one can observe rings, spiral waves, chemical tur-
bulence, and Turing patterns. ' The details of these
structures are being studied using new experimental
probes. Usually, these phenomena are described by
reaction-diffusion equations and this level of description
suffices for most applications. However, it is interesting
to inquire into the molecular nature of such macroscopic
phenomena. How do chemical waves emerge from the
molecular collision processes in the system? How do
fluctuations, which arise from the molecular nature of
the system, affect the spatiotemporal structures that are
observed? How do Auctuations inAuence pattern forma-
tion processes and the behavior near bifurcation points
where the system is very susceptible to small changes?
These are just a few questions that can be answered if
the system is viewed at a molecular level.

The most direct way to approach these questions is by
molecular-dynamics (MD) simulations but this is still
beyond even the most powerful computers due to the
long distance and time scales that must be probed and
the large numbers of molecules that are needed to simu-
late macroscopic phenomena. This has led to the devel-
opment of approximate MD schemes; notable among
these is the application of the Bird method to the study
of chemical oscillations. Here we adopt a lattice-gas
cellular automaton (LGCA) method where space, time,
and particle velocities are taken to be discrete variables.
This approach has proved to be very fruitful in the study
of hydrodynamic problems and we demonstrate that
such LGCA models can also be used to explore the rich
phenomena of chemical systems. The potential useful-
ness of such an approach was presaged in a study of a

one-variable chemical reaction that shows phase separa-
tion. However, much of the most interesting phenome-
na like excitable chemical wave dynamics, oscillations,
and Turing bifurcations occur only in systems with more
than one chemical species. We present the formulation
of the LGCA model for several species and show that it
can be used to explore the varied phenomenology men-
tioned above.

The system we consider is composed of n chemical
species X|,X2, . . . ,X„whose reactive dynamics is of in-
terest. The system may also contain solvent molecules as
well as other chemical species that participate in chemi-
cal reactions but which are either in excess or have their
average concentrations fixed by external constraints.
The chemical intermediates X, undergo reactions of the
general form

a|X|+.. . +a„X„~p)X|+ +p„X„,
where we have not explicitly indicated species whose con-
centrations are fixed; their concentrations can be incor-
porated into the rate constants that determine the rates
of (1).

In the LGCA model of such a reacting system, space
is made discrete by requiring the particles to move on a
lattice with coordination number m. Each node of the
lattice is labeled by a vector r and each particle has a
discrete velocity c; (i =1, . . . , m) pointing in one of the
m possible directions on the lattice. To simplify the dy-
namics we impose an exclusion principle that prevents
two particles of the same species to be at the same node
with the same velocity. A conceptually attractive way to
think of this is as a "stack" of n "species lattices" with
identical labeling of the nodes. Each species then resides
on its own lattice but the dynamics on these lattices is
coupled by the chemical reactions.

As in the one-variable LGCA, the evolution consists
of the product R 0 Co P of three elementary operations:
propagation P, chemical transformation C, and rotation
R. In the propagation step each particle of a given
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species moves on its own lattice from its node to a
nearest-neighbor node in a direction determined by its
velocity. The rotation operation can be described in the
following way. At each node, independently of the oth-
ers, the particle configuration is rotated through one of
the possible angles 01 =12m/m, 1=1, . . . , m, with proba-
bility pI',. the probabilities may be difkrent for each
species. (The probabilities must satisfy certain relations
to preserve isotropy. ) The propagation and rotation
steps simulate free streaming and elastic collisions whose
net effect is to produce diffusion processes with different
diA'u sion coe%cients for the diff'erent species. The
diffusion coefficients can also be modified by performing
diAerent numbers of propagation and rotation steps on
each species lattice. At this level of description the n

species lattices are uncoupled.
The chemical transformation C is at the heart of the

LGCA model. In this step the reactions (I) that the in-

termediate chemical species undergo are modeled by
probabilistic rules for the increase or decrease of the
number of particles. The numbers of the diAeent species
in the reactant and product states can be specified by the
vectors a = (a ~, . . . , a„) and P = (P ~, . . . , P„), respec-
tively, where 0~ a„P,~ m for each r= I, . . . , n The.
configuration at node r is examined and depending on
the stoichiometric configuration a a transformation to
configuration P is made with probability P(aP) regard-
less of the velocity states of the particles. This
chemical-reaction step depends on the configurations of
all species that reside at a node with label r and thus
couples the dynamics on the notional stack of species lat-
tices. (Of course, a mathematical description of the au-

tomaton dynamics does not rely on this terminology us-

ing a stack of species lattices and can be formulated
directly in terms of Boolean random fields. )

To summarize, for each time step we first propagate
the particles one lattice unit in directions determined by
their velocities (independently on each species lattice),
then depending on the species numbers at a node on the
entire stack of species lattices we eff'ect a chemical trans-
formation with probability P(aP), and finally we ran-
domly rotate the configuration on each species lattice.
The combination of the latter two operations simulates
reactive and elastic collisions in the system yielding a
mesoscopic model that mimics the molecular dynamics
of the real reacting medium.

One aim of this work is to obtain a deeper understand-
ing of the spatiotemporal structures that are known to
exist for a given reaction-diff'usion model or real chemi-
cal kinetics. Thus, it is important to establish a relation
between the LGCA and a reaction-diffusion equation
with specific (nonlinear) kinetics. The connection can be
made by taking expectation values of the microdynami-
cal equation for the automation and deducing from these
the chemical rate law and reaction-diAusion equation.
This provides a "molecular-level" connection between
the automaton parameters and the macroscopic rate con-
stants and diffusion coefficients. This reduction was car-
ried out for the multispecies automaton. We focus on
the chemical rate law as an illustration. Taking the sys-
tem to be spatially homogenous and assuming that the
expectation value of products of random fields can be
factored we obtain the following equation for the chemi-
cal concentrations:

dp, (r) n m pyg m —Q~

(P, —a, )P(aP) g g ( —I) "m -'p„(r)'.
a, PE C =a„,Q& l Q&

Here p, is the particle density per node of species r, 8 is
the set of all possible reactions that lead to P starting
from a, and the prime on the sum means a~P. This
equation expresses the rate of change of the densities in

terms of products of the densities and the chemical
transformation probabilities. Equation (2) has the same
form as the macroscopic rate law. By identifying the
coefficients of equal powers of the densities in (2) with
those in the phenomenological rate law we can establish
relations between the P(aP) and the rate coefficients.
This makes it possible to construct a whole family of
LGCA rules that are consistent with a given macroscopic
rate law.

We have applied the above formalism to a two-
variable reaction-diffusion system: the Selkov model. '

The chemical mechanism is

kl k2 k3

a-x, x+2y -3y, y -b,
k k 2 k

with rate law

2 3

dt =kappa k —1px k2pxpy+k —2py i

dpy 2 — 3

dt
k —3pb k 3py +k 2pxpy k —2py ~

This system is known' to possess a very rich bifurcation
structure consisting of steady states which are either
nodes or foci and which may have excitability properties.
In addition the system can undergo a Hopf bifurcation to
a limit-cycle state. The system also possesses regions
where there is bistability between two fixed points or be-
tween a fixed point and a limit cycle. In the spatial
domain the corresponding

reaction-diffusion

equation
can support a variety of chemical waves and spatiotem-
poral and steady bifurcation structures.

In the Selkov LGCA model the elements of the 25 x 25
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FIG. 1. Phase-plane representation of the limit cycle:
klp, =0.0001897, k3 =0.001, k —l =0.1k3, k2=k-2 =0.01,
k —3pb =0.000025 30. The rotation probabilities are
(diffusion coefficients D„=D» =D) and concentration units of
x and y are particles per velocity direction. Lattice size
256 x 256.
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reaction probability matrix P(ij,ij''), where a=(i,j )
and p=(i',j '), were determined by restricting reactive
particle changes to increases or decreases by one particle
in accord with the Selkov kinetics and requiring the
remaining nonzero elements to satisfy the constraints im-
posed by the relation between (2) and the phenomeno-
logical rate law (4). The model was simulated on a
square lattice with periodic boundary conditions but, as

is clear from the above, generalization is straightforward
(and necessary if reactive Pows are to be considered").
Here we focus on the reaction-diA'usion aspects of the
problem.

The LGCA is able to reproduce the above-mentioned
phenomena and, in addition, provides a means to study
spatiotemporal dynamics at a nearly microscopic level.
We have observed both monotone and oscillatory decay
to a fixed point in the LGCA simulations. We have also
selected system parameters to correspond to oscillatory
kinetics in the Selkov model and an example of an
LGCA limit cycle is shown in Fig. l. Note the relaxa-
tion character of the limit cycle; harmonic-type oscilla-
tions have also been observed near a Hopf bifurcation.

Next we consider some illustrations of spatiotemporal
dynamics in the LGCA. An especially interesting case
to study is excitability where a stable fixed point exists
and a perturbation of sufficiently large magnitude causes
the system to make a long excursion in phase space be-
fore return to the fixed point. In the spatial domain this
phenomenon gives rise to chemical waves like rings and
spirals which have been the subject of intense experimen-
tal and theoretical activity. ' To simulate the formation
of a ring of excitation we allowed the system to relax to
the stable state starting from a random initial condition.
A disk-shaped perturbation with average concentration
greater than the threshold was then introduced. Figure 2
is a snapshot of the evolution of the y concentration
showing a growing ring of excitation. If such a ring is
sheared, spiral waves can develop by curling of the free
ends. To simulate this, one-half of the ring was removed
and that half of the lattice was seeded with particles at
the steady-state concentration. This creates two free
ends which curl to form a counterrotating pair of spiral
waves (Fig. 3).

We have studied bifurcations of the homogeneous

~ .
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FIG. 2. Ring of excitation in the excitable region: klp,
=0.00023717, k3 =0.001, k —I =0.1k3, k2 =k —2 =0.01, k —3p&

=0.000006324. Lattice size 512&&512; and D =D» =D/3.
FIG. 3. Formation of a counterrotating spiral wave pair.

parameters are the same as Fig. 2.
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FIG. 4. Turing pattern formed from random initial condi-
tions: k lp, =0.0001897, k3 =0.001, k —l =0.1k3, k2 =k —2
=0.01, k —3pq =0.000037 95. Lattice size: 256 x 256; and
D. =D, D, =D/10.

state induced by unequal diffusion coefficients. The
diffusion coefficients were changed by performing
different numbers of propagation and rotation steps on
the two species lattices. Figure 4 shows an example of a
spatial structure that is obtained when the Selkov pa-
rameters are chosen to lie in the vicinity of a Turing bi-
furcation. The characteristic length of the spot pattern
is in accord with that predicted from a linear stability
analysis. Simulations with smaller diffusion ratios do not
show patterns providing evidence for a Turing bifurca-
tion in the LGCA.

The LGCA model presented here can be used to study
the varied phenomena that are found in far-from-
equilibrium reacting systems and models of this type
open up a new way of investigating these systems.
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