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We present a lattice-gas automaton approach to coupled reaction-diffusion equations. This approach
provides a microscopic basis for exploring systems which exhibit such interesting features as oscillatory
behavior and pattern formation. Two-species systems are analyzed in detail. As an applicatin of the for-
malism, we construct the microscopic dynamics for a system described by the Maginu equations; simula-
tion results show excellent agreement with the phenomenological predictions. Most important is the re-
sult showing that we obtain Turing-type structures by a purely microscopic approach.

PACS numbers: 82.20.Wt, 05.40.+j, 05.60.+w, 51.10.+y

Recently, a class of probabilistic cellular automata has
been proposed as a microscopic approach to a class of
Ginzburg-Landau equations: x =¢(x)+V2x, with x real,
and where ¢(x) is a polynomial whose maximum degree
is set by the lattice symmetry of the automaton.! This
class of equations is commonly used for the phenomeno-
logical description of dynamical phase transitions with a
nonconserved order parameter, and in particular for
reaction-diffusion (RD) systems whose dynamics can be
reduced to single-species dynamics. The validity of the
lattice-gas automata (LGA) approach was shown both
theoretically and ‘“‘experimentally”” through numerical
simulations.> In particular, the application to a
specific—but typical—reactive scheme (the Schldgl
model) has proved to be fully successful not only in that
the automaton model yields the expected phenomenology
(bistability, domain formation, etc.) but also in that it
provides a microscopic approach which indicates the lim-
its of validity of the phenomenological equation.? In this
Letter we present a generalization of the LGA approach
to a class of coupled RD equations. For the sake of sim-
plicity, here we restrict our analysis to two-species (X,Y)
RD systems as described phenomenologically by a set of
partial differential equations (PDE’s) of the form

9, x =¢(x,y)+D,Ax, 8,y=9¢(x,y)+D,Ay. (1)

Such systems are known to exhibit quite interesting
features such as oscillatory behavior, phase oscillations,
and patterns which are considered to model Turing struc-
tures,> which have been recently observed experimental-
ly.* So far no theoretical microscopic analysis has been
constructed which displays all such features at the mac-
roscopic level.> The purpose of the present Letter is to
show that a class of LGA achieves this goal.

A typical reaction-diffusion system, in general, in-
volves several reactive species. However, most interest-
ing phenomena occur when the system is constrained far
from equilibrium,? which can be realized by imposing
constant concentration values to all species except a few
whose dynamics is described by a set of equations of the
type (1). As a result an automaton can be constructed

by restricting the microdynamics solely to the uncon-
strained species. The physical space of a LGA is a regu-
lar lattice where particles undergo one-dimensional dis-
placements from node to nearest-neighbor node in one
time step. So the space and time variables are discrete
as well as the velocities, which are unit vectors oriented
along the links connecting neighboring nodes. We define
a cell as a connecting link, and the number of cells asso-
ciated to a node is set by the lattice symmetry. In gen-
eral (and mostly for computational convenience) an ex-
clusion principle is imposed such that each node has the
same limited number of possible states; the elementary
case is the single-species model where the exclusion prin-
ciple restricts the occupation of a cell to one particle, i.e.,
the state of the cell takes the value 0 (unoccupied) or 1
(occupied by a particle). Diffusion of particles is real-
ized by a stochastic procedure that makes the particles
undergo random displacements. The automaton realiza-
tion is performed by random rotations on the nodes of
the lattice: Such random deflections can be viewed as
elastic collisions of particles with ghost particles of a vir-
tual substrate (a momentum reservoir). Between these
elastic collisions, particles propagate from node to node
by discrete time steps in the direction of their velocity
vector. As a result of the successive sequences of propa-
gation followed by deflection, particles undergo random
walks on the lattice as described in the continuous limit
by a diffusion equation. Reactive collisions generate
creation or annihilation of particles when particles meet
at a node; such collisions must be governed by the kinet-
ics of the considered reaction scheme, as described in the
continuous limit by a rate equation.> Consequently, the
updating rule which yields the configuration field at time
t+1 as a function of the state at time ¢ is given in terms
of three basic operators: P (propagation), R (rotation),
and C (collisional reactive transformation). So, the evo-
lution operator can be the product C° R© P, but alterna-
tive combinations such as Co (R©oP™)" are equally pos-
sible. Probabilistic rules for the automaton are impor-
tant in that they offer the desired flexibility for tuning
the kinetic rate constants and for adjusting the diffusion
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coefficients. How this is realized will be developed below
for two-species systems.

In order to allow for the coexistence of several species
on a lattice, the single-species exclusion principle must
be extended. For two-species models the exclusion prin-
ciple can be established in two ways.

(i) The single-lattice model.— The exclusion principle
applies to all particles regardless of the species. Then
each cell on the lattice has three possible states: unoccu-
pied, occupied by an X particle, or occupied by a Y parti-
cle.

(ii) The coupled-lattice model.—The exclusion. prin-
ciple applies to the two species independently. Two par-
ticles can be simultaneously in the same cell, provided
they belong to different species. Then the Universe can
be viewed as the superposition of two coupled single-
species lattices; each lattice being subject to an exclusion
principle is described by a Boolean field (one bit per
cell).®

How is the updating rule generalized for these mod-
els? We first consider the single-lattice model. The gen-
eralization of the propagation step is straightforward:
Each particle moves in the direction of its velocity vector
to the nearest-neighbor node. During this step the veloc-
ity and the species of the particle are conserved (only po-
sition changes). The generalization of the rotation
operation R is also quite logical: The rotation operator
maps each node configuration onto a new configuration
independently and simultaneously at each lattice node,
according to a stochastic rule which conserves the num-
ber of particles for each species (only velocities
change).” The reactive transformation C operates in-
dependently at each node of the lattice where particles
are randomly created or annihilated through reactive
collisions of the type

aX+pY— a'X+p'Y, )
with net reaction probabilities P,p../5. The occurrence of
a reaction is independent of the velocity configuration at
the node, and the velocity distribution is only modified
by particles that are created or destroyed; creation (an-
nihilation) occurs with equal probability on all empty
(occupied) cells. The allowed reactions are restricted by
the exclusion principle, i.e., the following relation holds
for the indices of the transition probability matrix P:

a,B,(a+p),a' B, (a'+p) € (O,...,b), (3)
where b is the total number of cells per node.

The coupled-lattice model offers more flexibility in the
generalization of the dynamics: (i) Since propagation
and rotation take place on separate lattices for each
species, one can tune the respective diffusion coefficients
independently by applying the propagation operator with
different frequencies to each species. This procedure
is not applicable to the single-lattice model. (ii) The
coupled-lattice rotation operator produces mixing in-
dependently in each lattice. Therefore different rotation
operators (one for each species) can be used to obtain
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different diffusion coefficients for each species. Note
that the strict exclusion principle precludes separate mix-
ing in the single-lattice model; however, if the mixing
operation is node-configuration dependent, it is possible
to obtain different diffusion coefficients with the single-
lattice model, but the diffusion coefficients will then be-
come concentration dependent.

In the coupled-lattice model the reactive transforma-
tion C applies to pairs of colocated nodes (one on each
lattice). Particles are created or destroyed randomly in
their respective lattices according to the joint configu-
ration of the two corresponding nodes. The occurrence
of a reaction depends on the number of particles (a and
B) and is independent of the velocity configuration of the
pair of nodes, and the velocity distribution is only
modified by particles that are created or destroyed. The
reactive transformation operator is determined by a tran-
sition probability matrix Pgg,p corresponding to reac-
tions of the type given by Eq. (2), and the allowed reac-
tions are restricted by the coupled-lattice exclusion prin-
ciple:

a,B,a',p'€,...,b). 4

Having defined the automaton rules, we address the
question: What kind of physics can we expect from
these rules? We will not give a statistical-mechanical
treatment, which will be presented elsewhere as an ex-
tension of the theory developed earlier;?> rather we
present a phenomenological analysis to emphasize physi-
cal aspects. For reasons that should be clear from the
above discussion, here we consider the coupled-lattice
model which has more operational flexibility.

If the time between two reactive events is much larger
than the time between two mixing operations, it is
reasonable to assume that the reactions occur at local
diffusive equilibrium. Under this assumption, the aver-
age number of particles per cell (i.e., the probability of
finding a cell occupied) is cell independent. Consequent-
ly the occupation probabilities to be considered are x(r)
and y(r), the local densities per cell at node r of species
X and Y, respectively. Under the local-equilibrium as-
sumption, the probability that ¢ X particles and 8 Y par-
ticles be simultaneously at a node factorizes into two bi-
nomials; therefore the probability of occurrence of reac-
tion (2) is given by

[CEx(1 = )P~ ICH (1 =)W Pugp] . (5)
Taking into account that density variations are due to
diffusive transport and reactive processes, we expect that
the macroscopic behavior of the automaton should be de-
scribed by a set of coupled PDE’s (1) with reaction rates

e(x,y)=(/b) Bz:'ﬂ’ (¢ —a)[CEx*(1 —x)2 9]

apia
x [ngﬂ(l _y)b _a]Paﬂ:a'ﬂ' s
(6)
¢(x,y) =(1/b) ;p,(ﬂ’—ﬁ)[Ci,’x"(l —x)b7e]

x [ChyP(1 =)~ 1 Pupary .
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In Egs. (6) the factor 1/b is introduced so that the rates
are expressed in cell units.

Now we address the inverse problem: Given a set of
phenomenological rates ¢(x,y) and ¢(x,y), Eq. (1), do
P.p..p’s exist such that these rates identify with the au-
tomaton rates (6)? As the polynomials x%(1—x)?~¢
xyP(1—y)®~P (a,=1...b), in (6), form a basis for
polynomials in x and y with degree less than or equal to
b in x and in y separately, a necessary condition is that
the phenomenological rates belong to that ensemble, i.e.,

b b
elx,p) =23 A xky?,
k=0/=0
- @)
o(x,p) =2 X Bix*y'.
k=0/=0

If so, then in principle, the RD equation (1) can be con-
structed with the automaton by establishing the relation-
ship between the coefficients A4y ; and By ; and the transi-
tion probability matrix elements P, s.,'g. The total num-
ber of elements is (b +1)*, with (5 +1)2 constraints,

4
Z Pa/i;a',ﬂ'=1 N (8)
a',f =0
while there are 2(b +1)? coefficients Ag,1,Bk,1. As a re-
sult one has (b+1)*—3(b+1)? degrees of freedom
which, in principle, provides considerable flexibility to set
up a class of automata for a given set of RD equations.
However, it follows from the positivity condition

0=< Pa‘p;a"p'S 1 )

that not all reaction rates are realizable with the au-
tomaton. For instance, if concentration x takes its upper
limit (=1), the reactive rate ¢ cannot be positive. Simi-
lar necessary conditions on the reaction rates are ob-
tained for x =0, y =0, y=1. In fact these necessary con-
ditions are also sufficient in the following sense: If the
reaction rates are such that the flow x=e(x,y), y
=¢(x,y) is confined to the phase-space domain [0,1]
x[0,11, i.e.,

0(0,y) =0, «(1,y) <0,
(10)
¢(x,0)=0, ¢(x,1)=<0,

then there exists a constant s such that the rescaled rates
¢/s and ¢/s are realizable with the cellular automaton
rule. As the factor s can be absorbed in a scaling of
time, all reactive rates that obey (10) can be investigated
with the automaton.

We have applied the coupled-lattice formalism to a set
of RD equations known as the Maginu model® which
shows oscillatory behavior and Turing-type structures:

dx=x—x3/3—y+D.Ax,

(an
9y =(x—ky)/c+D,Ay,

with ¢ >0 and 0 <k <1. As is, this set of equations
does not fulfill requirements (10). However, for all
values of the parameters ¢ and k there exists at least one
linear transformation of x and y which maps the set of
equations (11) onto an admissible set,’ e.g.,

x'=%+x/V120+1/k),
y'=1%+yk/N120+1/k),

which is valid for all values of ¢ and for all k > +.

For the computational realization of the Maginu mod-
el, Egs. (12), we have chosen to restrict the set of transi-
tion probabilities by supposing additional (although op-
tional) requirements: (i) Solely reactions with single-
particle change for each species are considered, i.e., in
Eq. 2), (a—a'),(—p') € (0, £ 1); (ii) for any number
of particle configuration (a.X,8Y), creation and annihila-
tion transitions are exclusive within each species, i.e.,
(a—a') is either =0 or =<0, and similarly for (8 —p');
and (iii) (@ —a') and (B8 — ') are stochastically indepen-
dent. These constraints combined with (8) determine
uniquely the set of Pusqp, and (9) sets the minimum
value of the scaling factor s. The rotation operator R,
(the index L =X,Y refers to the species lattice) acts on
each node such that its configuration is rigidly rotated by
n/2, =, or 3x/2, with equal probabilities g;, and is left
unchanged with probability 1 —3q;. The evolution
operator can be written symbolically as Co (R, 0P, )"™.
The exponent n; governs the diffusion mechanism for
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FIG. 1. Limit cycle (outer ring) obtained from the LGA
simulation of the Maginu model. Parameter values: & =0.9,
c=2, s=10, g« =g, =1, nx =n, =1; lattice size: 64 %64 nodes.
The inner ring shows the shrinking effect when the ratio of
reactive collisions to elastic collisions is increased; same param-
eter values, except s =2.
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each species: Between two reactive collisions, the X (Y)
particles undergo ny (ny) propagation-rotation se-
quences.

The simulations were performed on a square lattice
with periodic boundary conditions; values of relevant pa-
rameters are given in the figure captions. Two essential
results will be described here. Oscillatory behavior is il-
lustrated in Fig. 1 which shows the limit cycle obtained
by averaging the density over the whole system. The
phase-space trajectory and the value of the frequency are
in quantitative agreement with the predictions from the
Maginu equations, Egs. (12). Now, when the diffusion
coefficients are lowered, intrinsic fluctuations play a cru-
cial role: Spatial phase coherence can no longer be
maintained by diffusion over the whole system and as a
result one observes (after spatial averaging) a dramatic
shrinking of the limit cycle, as also shown in Fig. 1. The
second most important result is the observation of
Turing-type structures. Linear stability analysis of the
Maginu equations shows that the homogeneous steady
state can become unstable by spatial destabilization
when (D,/D,))'?<(1—v1—k)Vc/k for 0<c<k.'
Under these conditions, the automaton, when prepared
initially in the homogeneous steady state [according to
the rate equations (6)] destabilizes and develops worm-
like spatial structures (Fig. 2) which we conjecture to be
Turing structures on the basis of the following observa-
tions: (i) the patterns are quasisteady and are morpho-
logically equivalent to the pattern obtained from the nu-
merical simulations of the phenomenological equations in
the same regime; (ii) the characteristic wavelength of
the observed pattern is independent of the size of the sys-
tem and has the correct order of magnitude, i.e, as pre-
dicted from Egs. (11); and Gii) destabilization of the
homogeneous steady state occurs only if the values of the
diffusion coeflicients of the two species differ sufficiently
from each other. While some points remain to be ex-
plored—in particular, the role of intrinsic fluctuations
versus pattern selection mechanism—the present work
shows that LGA provide a valuable microscopic ap-
proach to the investigation of the spatiotemporal behav-
ior of RD systems. '
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FIG. 2. Turing-type pattern obtained from the destabiliza-
tion of the homogeneous unstable steady state. The concentra-
tion ranges from x > 0.72 (dark) to x <0.28 (light). Parame-
ter values: k=0.9, c =045, s=10, g. =1, g, =0.6429, n. =1,
n, =9; D, =0.25, D, =4.75; lattice size: 256 X256 nodes.



