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We propose an experiment which demonstrates the nonlocal properties of a single-photon field via
phase-sensitive measurements. This is the first proposal which demonstrates nonlocality and a violation
of Bell’s inequality with a single photon rather than a correlated photon pair.
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In this paper we wish to propose an experiment which
will demonstrate in a most striking way the nonlocal
properties of a single photon. In essence the effect of the
single photon is felt at two spatially separated detectors.
This manifests itself as an enhancement of the two-
photon coincidence count rate when homodyne measure-
ments are performed on the one-photon field at two
different positions.

The nonlocal property of the photon field is evident in
the Young’s interference experiment performed by Gran-
gier, Roger, and Aspect' where only a single photon is
incident on the two slits. The interference fringes ob-
served are explained quantum mechanically by the in-
terference of the two paths the photon may take. How-
ever, the observed interference fringes may be explained
by a classical field theory which is nonlocal. In the ex-
periment we propose, the effects predicted may not be
duplicated by any classical theory.

Discussions concerning the nonlocality of quantum
mechanics were initiated by Einstein, Podolsky, and
Rosen? (EPR) and later formulated in a rigorous fashion
by Bell>* via his famous inequalities.

Bell’s inequality has traditionally been used to demon-
strate the failure of local causality in quantum mechan-
ics, since it places bounds on the degree of correlation
which can exist between measurements made at two spa-
tially separated detectors if local causality was valid. In
quantum mechanics, a measurement affects the entire.
system being measured, so that the result of a measure-
ment at one detector depends not only on the local pa-
rameters at that detector, but may be coupled via a
quantum correlation in the system to the parameters at
the other.

In the many configurations which have been proposed
to demonstrate violations of Bell’s inequality, a common
feature is that a pair of particles is involved, generated
by some interaction which imposes a high degree of
correlation between them. The system consists of the
pair of particles, which maintain the correlation between
themselves as they separate. These are subsequently re-
sponsible for the violation of Bell’s inequality. Indeed, in
the experiments in optics which have demonstrated a
violation of Bell’s inequality, correlated pairs of photons
have been generated either by a two-photon atomic cas-

cade™® or by nondegenerate parametric amplification.”®

Related experiments to observe nonlocal effects in two-
photon interference also involve a correlated pair gen-
erated by nondegenerate parametric amplification. '°

In this paper we describe a configuration for demon-
strating the nonlocal nature of quantum-mechanical
states which does not rely on having two correlated parti-
cles. Indeed, a special case of the general result shows
that the field generated by a single photon can have a
pronounced nonlocal effect on two homodyne detectors
giving rise to EPR correlations and a violation of Bell’s
inequalities. We contrast the result with those expected
from a naive particle theory and a classical wave theory.

We consider a pair of homodyne detectors (indexed by
subscript k), each of which consists of a 50-50 beam
splitter, a coherent local oscillator with amplitude ay
=qaexp(ify), and two photodetectors in the output ports.
The inputs to these homodyne detectors are themselves
derived from a third 50-50 beam splitter, as shown in
Fig. 1. Other schemes involving homodyne detection
have been proposed to investigate the EPR paradox'!
and violations of Bell’s inequalities. 2

Referring to Fig. 1, we see that homodyne detector &
may be regarded as making a measurement of mode by,
with a local parameter 6;. This local parameter is
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FIG. 1. Proposed experimental configuration.
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analogous to the angle of the analyzer used in the con-
ventional two-particle EPR experiment. We wish to
determine the probabilities with which the individual
photodetectors respond, and the coincidence probabilities
for pairs of photodetectors, one in each homodyne detec-
tor.

The transformation between the mode operators
shown in Fig. 1 is given by

d) il
b} a1 la)

Thus the modes input to the detectors may be expressed
in terms of the input-mode operators by
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This enables us to calculate the coincidence probabilities
between the detectors directly in terms of the input
fields.

We begin first by considering vacuum inputs to the
modes # and 5. The local oscillators are assumed to be
in coherent states |ae'9‘), |ae'92). The intensities at all
detectors are found to be equal

()= =) ={Uy) =7 a>. (3)

The two-photon coincidence rates due to rare chance
coincidences between the local oscillators are also equal
between the pairs of detectors

<1C11¢2> =<[d11d2> =<I(11,12> =<Id1102> = JT a4 . (4)

We now consider the input of a single photon in mode
i while the mode & is the vacuum. The state of the two-
mode field b, and b, after the first beam splitter is then
an entangled state'>'* of a one-photon state and the vac-
uum

|w)=(1/\/§)(i|l),;]|0)52+|0)5||1>,;2), (5)

which is precisely the same state as one gets (except for
a phase factor) for a one-photon state incident on the
two slits in Young’s interference experiment.

The photon count probabilities at the individual detec-
tors are now

(L) =) =) =Us) =7 a’+ 7 . (6)

Thus the intensities at each detector are increased by ¥,
being the probability that the one-photon input is detect-
ed by any given detector. The coincidence count proba-
bilities between the pairs of detectors differ, now depend-

ing on which pair is considered. We find
(I 1) =y 1) =7 la*+a?[1+sin(6, — 6,)1}, (7
U dg) =1y 1) =7 {la*+a?[1 —sin(6, — 6,)1} . (®)

The coincidence probabilities depend on the phase dif-
ference between the local oscillators 8; — 6,; if this is set
to — /2, we get the minimum possible coincidence prob-
ability of +a* between detector pairs (é1,¢;) and
(dAl,dz) and the maximum coincidence probability of
L a*+ § a? between pairs (¢1,d,) and (d,é,). We shall
be most interested in the situation where a is small com-
pared to 1.

Let us first try to interpret these results from a naive
particle viewpoint. The great enhancement of the singles
count probability over that with vacuum inputs is easily
understood by the above argument. On the other hand,
a coincidence between two detectors is expected to be a
rare event since there is only one incident photon, and a
coincidence can only occur if an additional photon is
generated by the (weak) local oscillator of the homodyne
detector which the photon does not reach. Since these
two photons are detected at two spatially separated
detectors and have apparently arisen from independent
sources, we would not expect any correlation between the
paths of these photons within each homodyne detector.
Nevertheless, the quantum-mechanical analysis shows
such a correlation is present. In fact, this correlation is
so great that for the choice of phases given above, no ad-
ditional coincidences (above the vacuum level) occur for
particular detector pairs, whereas there is a relatively
large coincidence probability (proportional to the local
oscillator intensity) for the other pairs.

Nonlocal intensity correlations and their dependence
on the local oscillator phases are not unexpected from a
classical wave description of light. A classical analog to
the single-photon input is a wave of low amplitude and
unspecified phase. We may formally obtain the results
for the classical wave theory from the quantum-me-
chanical calculation by substituting the wave amplitude
Be *i for b and b*, respectively, and averaging over the
random phase ¢. It is easy to check that the predicted
average intensities and intensity correlations are given by

L) =) =Uz)=U;) =1 a’+ 7 B, )
<IE|IC‘"2)=<IdA|Iti2)

=1 {a*+a?B%[1 +sin(6, —6:)1+ + B4, (10)
U 150 =15 I:,)

=L {a*+a?B%[1 —sin(6, — 6:)1+ L %4 . (11)

If we consider the coincidence probabilities as a function
of 6, —6,, we see that they vary between % (a*+ %)
and § (a*+2aB%+ § B*). This corresponds to a “visi-
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FIG. 2. Coincidence probabilities for quantum-mechanical
model (solid line) and classical wave model (dashed line).

bility” of
Vv =p/(p*+p+ 1), (12)

where p={(a/B)% The visibility attains a maximum
value of + when p= 4. By contrast, the visibility as cal-
culated from the quantum-mechanical result is

y=1/(a’+1). 13)

This can be made arbitrarily close to unity by choosing a
sufficiently small value of a. Figure 2 shows the coin-
cidence probabilities (I; I. ) =(I; I;,) as a function of the
local oscillator phase difference for the quantum-me-
chanical and classical results with =1 and a=1/"/2.
This gives the same singles count probability of + in
each detector, and the local oscillator amplitudes are op-
timized for maximum visibility in the classical result.
However, the quantum-mechanical visibility is consider-
ably larger than that expected classically. This is clearly
seen in Fig. 3 where the visibility V is plotted as a func-
tion of the coherent local oscillator amplitude a for the
quantum-mechanical single-photon state and the classi-
cal wave model with g=1.

We thus see that by measuring the coincidence proba-
bility -in a pair of detectors, it is possible to distinguish
between the classical and quantum-mechanical models.
If the detector efficiencies are less than unity, coin-
cidences will be missed, but the ratio of minimum to
maximum coincidence rates as the relative phase of the
local oscillators is varied is unaffected, provided that

a2{(a T2)sin (8, — 6,) + |<i2 ) |sin (6, + 6, — &)}
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FIG. 3. Variation of visibility with local oscillator amplitude

for quantum-mechanical model (solid line) and classical wave
model (dashed line).

spurious coincidences due to the dark count rates of the
detectors are removed. Even without compensating for
the dark count rates, it is possible to test the quantum-
mechanical prediction that for the correct choice of local
oscillator phases, there is no increase in the coincidence
count rate in one of the detector pairs when the one-
photon input is applied.

Preparation of a single-photon state may be achieved
experimentally by using the signal beam of a parametric
amplifier while monitoring photons in the idler beam.'?
Hong and Mandel'® describe an experiment in which a
nearly pure single-photon state was produced using this
method. If the pump for this parametric amplifier is de-
rived by frequency doubling a coherent beam, this pro-
vides a convenient source for the local oscillators re-
quired in this experiment.

In order to rigorously rule out classical explanations
for the quantum-mechanical result, it is necessary to
show that Bell’s inequality may be violated. The use of
phase-sensitive detectors for showing violations of Bell’s
inequalities have previously been discussed,!*!” and only
a summary of the results relating to this experiment will
be given. An intensity correlation coefficient is used
which involves all four photodetectors

<(1‘}| —[El)(lfiz—_lfz))

(g, +1,)Uy,+1:)) (14)

E(91,92) =

Evaluating this in terms of the statistics of the input
mode # where 0 is the vacuum yields

E(6,,6,) = —
o o+ e+ @ e

) (15)

where (512 =Rexp(i&). When a single-photon input is used for i, this reduces to

E(6,,6,) =[1/(a?+1)]sin(6, — 6,) .
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If the coefficient of sin(68;, — 6,) is greater than 1/+/2, it is
well known that this functional form for the correlation
allows a violation of Bell’s inequalities. This is clearly
possible if a is made sufficiently small. It has been
shown'” that such a violation of Bell’s inequalities is not
possible if i is in a coherent state, no matter how small
the input amplitude may be.

In conclusion, some of the most striking features of
nonlocality in quantum mechanics may be demonstrated
using phase-sensitive measurements on the field pro-
duced by a single photon. These effects may not be ex-
plained classically using a particle, wave, or hidden-
variable theory involving local causality.
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