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The width of the crack interface in the fuse model after breakdown, w, scales with the size of the net-
work, L, as ®~L°. When the disorder is narrow, or when it includes arbitrarily small threshold values,
we find that £=0.7 to within 10%, indicative of this being a universal value. This is not far from %, sug-
gested by an analogy with the random directed polymer problem. When, on the other hand, the disorder
is strong and includes arbitrarily large threshold values, the exponent ¢ depends on the disorder. These
results suggest that the random polymer problem may be relevant for brittle fracture in real materials.

PACS numbers: 64.60.Ht, 05.40.+j, 62.20.Mk

The understanding of the dynamics of growing inter-
faces has undergone a rapid development since the intro-
duction of the Kardar-Parisi-Zhang (KPZ) equation,
and the connection was made with the problem of direct-
ed polymers in a random medium.! The wide interest
that has been spurred from this work has its origin in
other seemingly unrelated problems, such as roughening
of pinned domain walls,? spin glasses,® and wave propa-
gation in a random medium,* that have been shown to be
governed by the KPZ equation, thus showing the same
scaling behavior as the random directed polymer.

Fracture has been studied within a statistical physics
framework for some time and several interesting results
concerning the scaling of various quantities describing
the fracture process have been found.® In particular, it
has been suggested that towards the end of the break-
down process, the stress field shows critical behavior.®
However, no deep understanding of the final parts of the
breakdown process exists. A natural question that arises
when looking at the list of problems falling within the
realm of the KPZ equation is whether the development
of cracks may also be governed by it. In this Letter, we
use the fuse model for brittle fracture’ to investigate this
question. It has earlier been shown that an elastic-
perfect-plastic medium (or rather an electrical equiv-

alent thereof) under strain behaves as a directed polymer

in a random medium.® We recapitulate this argument

briefly below. We then present a numerical study of the
fracture surface appearing at breakdown in the fracture
model. We find that the KPZ result falls within our
error bars.

The random directed polymer problem may be de-
scribed in the following way. We imagine a square lat-
tice oriented at 45° with respect to two borders a dis-
tance L/+/2 apart. On this lattice, we now consider all
directed paths between the upper and lower borders.
Each path corresponds to a given configuration of a poly-

mer. To each bond i in the lattice we assign a random
number e;. We think of these random numbers as local
energies associated with the interactions between the po-
lymer and the medium in which it is embedded. The to-
tal energy of the polymer along a path P is

E? = Z é;. (1)
iep
At zero temperature, the polymer chooses the path re-
sulting in minimum energy,
E=minEp=min Y, ¢;. (2)
P P iEP
The KPZ equation is a Langevin equation for this
minimal path. Using a dynamical renormalization-group
technique, Kardar, Parisi, and Zhang' found that the
width of the path, defined as w?=(x?) —{(x;)2, where x;
is the coordinate parallel to the borders of bond i belong-
ing to the minimal-energy path, scales as

w~L*¢, 3)

where the roughness exponent {= 3 in two dimensions.
The value of ¢ in other dimensions for the random poly-
mer problem is still controversial.’

In the fuse model and the related elastic-perfect-
plastic model, we also imagine a square lattice oriented
at 45° with respect to two borders a distance L/IN2
apart. We assume periodic boundary conditions perpen-
dicular to the two borders, which now act as bus bars.
The bonds are electrical elements that act as Ohmic
resistors if the voltage difference across them is below
some threshold value ¢;. In the fuse model, they turn ir-
reversibly into insulators if the voltage difference exceeds
this threshold value, as Fig. 1(a) shows. In the elastic-
perfect-plastic model, the electrical elements have char-
acteristics as shown in Fig. 1(b). These elements act as
Ohmic resistors up to a threshold voltage difference after
which the current they carry becomes a constant which
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FIG. 1 (a) The voltage-current characteristics of a fuse.

Here, v is the voltage difference across the fuse, and i is the
corresponding current. The resistance in the linear regime is
equal to 1. (b) The voltage-current characteristics of the elec-
trical analog of an elastic-perfect-plastic element.

is independent of any further increase in voltage differ-
ence. This behavior is an electrical analog of an elastic-
perfect-plastic material: Such a material will respond
with a force proportional to the elongation we impose on
it up to a certain threshold. If this threshold elongation
is exceeded, the force will not increase.

The disorder is introduced in both the fuse model and
the elastic-perfect-plastic model by assuming that the
thresholds vary from bond to bond according to a spa-
tially uncorrelated statistical distribution P(z).

We now recall the connection between the elastic-
perfect-plastic model and the problem of a directed poly-
mer in a random medium.® Suppose that we increase
the voltage difference across a network consisting of ele-
ments having characteristics as shown in Fig. 1(b). A
first bond i will reach its threshold value, and as the volt-
age difference is further increased the current it carries
will stay equal to that at #;. Increasing the voltage
difference across the network leads to more bonds reach-
ing their threshold values. When a continuous band 2 of
bonds across the network has formed parallel to the bus
bars, the current flowing through the network I cannot
be further increased. This maximal current must then
be equal to the sum of the threshold values of each bond
belonging to this band, as each threshold is equal to the
maximum current the bond can carry. The band that is
first to appear is the one where this sum is minimum,

I=min 2, t;, 4

P iep

where P is a closed path around the network. From Eq.
(2), we see that the problem is identical to the random
directed polymer problem, with the exception that there
is no a priori directedness imposed on the minimum-
current path. However, we note that the currents flow-
ing through the network actually impose a directedness
on the paths. Thus, the problem is a directed one, and
the width of the band, w =((y?) —(y;)?) '/, behaves as in
Eq. (3). y; is the coordinate perpendicular to the bus
bars of bond i belonging to this band.

We now turn to the fuse model, and imagine setting
up a voltage difference across the fuse network. As this
potential difference is increased, fuse after fuse “blows.”
Before any fuse has blown, each bond carries the same

current, so that the first one to go is the one with mini-
mum threshold value. However, the currents rearrange
themselves as the fuses blow, and at any stage of the
breakdown process the fuse to blow next will be the one
that minimizes the ratio ¢;/v;, where v; is the voltage
difference across bond i for unit voltage difference across
the network. The breakdown of the network thus turns
into a highly correlated process, involving the interaction
of the threshold distribution with the evolving current
distribution. At the final breakdown of the network,
characterized by zero conductance between the bus bars,
one crack has developed across the network, breaking it
apart.

We note the close similarity between the elastic-
perfect-plasticity model and the fuse model: The only
difference between the two models is that in the behavior
in the second case, the current through a bond after the
threshold is reached drops irreversibly to zero rather
than staying constant. The close relation between the
two problems suggests that the random polymer problem
indeed may be relevant for the fracture problem.

Another crude argument to justify an analogy between
fracture in the fuse model and the random polymer prob-
lem is to note that when there is large disorder, the first
stages of fracture consist of an uncorrelated fracture of
bonds anywhere in the lattice, in the order of their
strength. At the end of the process, the fracture process
is highly correlated. To model this last stage, it is ap-
pealing to imagine that the final crack will minimize the
number of fuses to be blown, using the holes generated in
the initial stage. This leads to the final crack having the
conformation of a direct polymer in a random medium
with an energy distribution e =0 or 1 according to the
state of the fuses.

There are three distinct classes of threshold distribu-
tions P(z) that are relevant for the asymptotic behavior
of the fracture process in the fuse model:'° (1) distribu-
tions that behave as P(z) =ar? for t<1, (2) distribu-
tions that behave as P(t)=1—bt ~# for t>1, and (3)
those that do not have power-law tails towards small or
large thresholds.

The analog of the first continuous band of elements in
the plastic state in the fuse model is the backbone of the
crack that broke the network apart. This backbone
forms the “visible” surface of the crack separating the
two pieces of the material, and is therefore experimental-
ly accessible.!" The width of this backbone we call w.
We typically generated 2000 samples of size L =5, 1000
of size L =10, 500 of size L =15, 250 of size L =20, 150
of size L=30, and 75 of size L =40, for each threshold
distribution P(z). The current distribution at each stage
of the fracture process was calculated by a conjugate
gradient technique, using an error criterion e < 10 ~ 10,12
In Fig. 2 we show w as a function of lattice size. The
threshold distributions used in this figure were (a)
P()=t% (b) P(t)=t"? both where 0<r<1, (c)
P@)=1—1t"2 (d) P()=1—e'"", (c) and (d) having
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FIG. 2. The width of the final crack ignoring its branchings,
w, as a function of lattice size L in the fuse model. O, distribu-
tion (a); @, distribution (b); O, distribution (c); m, distribution
(d); and A, distribution (e). The data have been moved apart
in the vertical direction for clarity. The straight lines show the
least-squares fits to the data.

1<t<oo, and (e) P(t)=(t—1)/4, where 1<t<5.
Distributions (a) and (b) fall within class (1), (c) within
class (2), and (d) and (e) within class (3) in the above
notation. The corresponding values of ¢, defined in Eq.
(3) and determined from least-squares fits, were (a)
0.76(2), (b) 0.75(2), (c) 0.81(5), (d) 0.75(5), and (e)
0.76(10). These values are typical examples of the be-
havior we found testing different distributions, and indi-
cate a value for the exponent {=0.75 for classes (1) and
(3). The data are much more noisy when the distribu-
tions belong to class (2) or (3) compared to class-(1)
distributions. In addition, there seems to be a qualitative
difference in the behavior when the distribution belongs
to class (2), as distribution (c) does: In this case the ex-
ponent { seems to depend on the distribution used.

If we measure the maximum extension in both the x
and y directions, Axmax and Aymax, for the largest crack
(including its branchings) throughout the entire fracture
process, we find the following scaling relation:

(AY max) ~{AX max) ¢ - (5)

In Fig. 3 we show a plot of Eq. (5) for distributions
(a)-(e). The corresponding scaling exponents ¢’ are (a)
0.64(5), (b) 0.78(5), (c) 0.66(5), (d) 0.62(5), and (e)
0.65(5)—again based on least-squares fits to the data.
We find it reasonable to assume that this exponent is
equal to the one governing the width of the final crack,
¢=¢'. Thus, comparing the numerical estimates we
have presented for the exponents ¢ and ¢’, it seems likely
that the data shown in Fig. 2 might overestimate the true
value of the exponent, while the data shown in Fig. 3
might underestimate it. However, the internal consisten-
cy of the two sets of data is a strong indication of univer-
sality. Combining the results of these two methods, we
estimate {=0.7 with a precision of about 10% for classes
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FIG. 3. (Apmax) plotted vs {Axma). The data have been
moved apart in the vertical direction for clarity, and appear in
the same order as in Fig. 2. The data are based on 250 sam-
ples of size 20x 20.

(1) and (3). The value %, which is the prediction for
problems described by the KPZ equation, falls within the
error bars of our estimate for ¢, supporting the notion of
a connection between the random directed polymer prob-
lem and this problem.

Let us finally note that recently it has been shown that
for certain distributions of energies e in Eq. (2) the ex-
ponent { may become dependent on the distribution. '>!4
The same seems to happen here for threshold distribu-
tions of class (2). Thus, the dependency of the exponent
& on the disorder in this case is not incompatible with the
possibility that this problem is in the same universality
class as the random directed polymer problem. We also
stress that we have done our numercial simulations on an
electrical analog of brittle fracture. It is a possibility
that the roughness exponent that we have determined
here may change when models employing elastic ele-
ments are used.
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