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Late-Time Coarsening Dynamics in a Nematic Liquid Crystal
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We have studied the coarsening dynamics of line defects in the uniaxial nematic liquid crystal 4-
cyano-4'-n-pentylbiphenyl, subjected to a rapid pressure jump from the isotropic to the nematic phase.
At late times, the density of disclination lines p is expected to scale with time as p~ t ' with v=1. We
have measured the scaling exponent to be v=1.02+ 0.09 over the region 16 & p & 160 mm . In addi-
tion, we have measured the collapse of loops consisting of type- —, disclination lines. The loop radius r is

expected to scale with time as r ee (to —t), where a= —, and to is the time at which the loop vanishes.
We found a to be 0.50 ~ 0.03.

PACS numbers: 64.60.Cn, 05.70.Fh, 61.30.jf

The ordering dynamics of a physical system that has
undergone a deep quench from a phase of higher symme-
try to a phase of lower symmetry is a topic of consider-
able interest. ' The behavior of such systems is expect-
ed to depend on the dimensionality and internal symme-
try of the system, and the presence of conservation laws.
The bulk of the experimental and theoretical work that
has been reported is on the phase-separation dynamics
(spinodal decomposition) of binary mixtures. More re-
cently, attention has also focused on systems whose
Hamiltonian has a continuous " rather than discrete
symmetry. Generally, theoretical work has concentrated
on models characterized by the time-dependent Landau-
Ginzburg equation. For such models, with nonconserved
order parameter, it is generally predicted "that the de-
fect line density should scale as t '. However, a scaling
behavior of t — from numerical simulations has
been reported for line defects in three dimensions, and
t ' —. for vortex defects in two dimensions. The
coarsening dynamics of systems undergoing phase transi-
tions by breaking a continuous symmetry are also of con-
siderable interest in cosmology. In particular, models
employing such phase transitions have been proposed to
account for the large-scale structure of the Universe. '

Although there has been considerable theoretical and
numerical work on the coarsening dynamics of systems
with a continuous symmetry there appears to be little ex-
perimental work. Orihara, Ishibashi, and Nagaya have
studied' ' two-dimensional coarsening dynamics in thin
6.1ms of uniaxial nematic liquid crystal subjected to rapid
thermal quenches and measured a scaling of t for the
correlation length. For this system coarsening proceeds
primarily by the collapse of disclination loops and the
line density is expected to scale as t ' . In this Letter,
we report experimental studies of the three-dimensional
coarsening dynamics of a uniaxial nematic liquid crystal
subjected to a rapid, pressure-jump-initiated isotropic to
nematic phase transition. The disclination line density
for this system is expected to scale as t '. We have also

studied loop collapse to verify the dynamics on which the
scaling prediction is based.

The order parameter' ' for the liquid crystal is de-
scribed by a second-rank traceless symmetric tensor.
The phase transition from the isotropic phase (the high-
temperature or low-pressure phase) to the nematic phase
(the low-temperature or high-pressure phase) thus in-
volves breaking from a SO(3) to an O(2) symmetry.
The vacuum manifold JKO for the nematic phase is the
projective two-sphere S2/Z2. Singular defects found in
the nematic phase include type- 2 disclination lines be-
longing to the tr~ (Af p) homotopy class, and singly
charged monopoles belonging to the tt2(Alp) homotopy
class. The nematic liquid crystal can also support tex-
ture, belonging to the tt3(Afp) homotopy class, although
these nonsingular objects appear to be very rare. Also
found in the uniaxial nematic phase are type-1 disclina-
tion lines. In a companion paper, we discuss the dy-
namics of these defects in more detail. Upon a rapid
pressure quench from the isotropic phase to the nematic
phase, a dense tangle of these defects is formed through
the Kibble mechanism. This tangle evolves to decrease
the system's energy. At late times, the dynamics of the
tangle are dominated by type-(+ —,

' ) and type-1 dis-
clination lines. The type- 2 disclination lines are more
energetic than the type-1 disclination lines, and hence
determine the late-time dynamics.

The dynamics of the disclination lines are controlled
by the string tension and the viscous forces. In particu-
lar, the line tension T scales as lnR/r„where r, is the
core radius and R is the typical spacing between disclina-
tion lines. For a disclination line moving through the
medium with a constant velocity v, one can show, using
nematodynamic equations, '

~r
68
6'n '

that the damping force I is also proportional to lnR/r, .

6 is the Frank free energy. ' ' The ratio T/I should
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thus be independent of R. We have tested this expecta-
tion by measuring the rate of collapse of disclination
loops. In particular, for a loop of radius r, one has
—I dr/dt =T/r, which when integrated yields

r =[(2T/I )(to —t)] ' '. (2)
One thus expects the loop radii to shrink with time via
r ~ (to —t)', with a =0.5.

This simple model for disclination-line dynamics al-
lows for an argument (of the Lifshitz-Slyosov type )
about how the late-time coarsening dynamics should
proceed provided that one postulates that the string net-
work should be characterized by a single scale g, defined
by p=g, where p is the line length per unit volume.
The typical radius of curvature of the strings and the
typical interstring separation are both proportional to g.

The characteristic velocity v of a string is found by
equating the characteristic line tension force, which is
proportional to T/g, with the characteristic friction force
I v per unit length. One finds v ~ T/I g. The rate of
loss of energy from the string network is thus 8'
=Tvp/g = T p /I per unit volume. The rate of decrease
of p can be calculated by equating this energy loss with
the time derivative of the string energy density 8'a: Tp
to get

dp Tc p (3)
dt r

where a constant of proportionality, c, has been intro-
duced.

Second, we should include the loss of length from the
long strings into loops: This is always favored by phase
space over reconnection of loops onto a long string. A
long string loses length to loops at a rate given by a
geometrical constant times v/g, which scales the same
way as the viscous-force damping term. Thus, the con-
stant c may be taken to include both these eff'ects. In-
tegrating Eq. (3), we find that the scaling solution is

given by p=(I /cT)t ', with v= 1.
We experimentally tested the p~ t ' string-density

scaling prediction and the r ~ (to —t) loop-collapse
rate equation by recording high-speed video pictures of
the string network which formed after performing a rap-
id pressure jump (of hP) to force an isotropic to nematic
phase transition. The data were analyzed using simple
image-processing techniques.

We studied the nematic liquid crystal 4-cyano-4'-n-
pentylbiphenyl, ' also referred to as K15 or CB5. The
material we used was obtained from BDH Chemicals,
and used without further purification. At atmospheric
pressure the isotropic to nematic phase transition occurs
at 35.3'C. We measured the slope hP/dT of the coex-
istence curve to be 2.47 MPa/K, between 0.7 and 17
MPa.

Our apparatus consisted of a pressure cell and sup-
porting pressurization and data-acquisition hardware.
The cell contained the liquid crystal between two sap-

phire observation windows, and was isolated from the
pressurization fluid by a Kapton diaphragm connected
via a short segment of high-pressure tubing. A thermo-
couple and heating wire were attached to the pressure
chamber to provide temperature control, and the
whole cell was encased in Styrofoam to provide insula-
tion. Pressure jumps were initiated by opening a valve
connecting the diaphragm to a hand-turned piston con-
taining water. The sapphire windows were treated with
homeotropic alignment material, N, N-dimethyl-¹ cta-
decyl-3-aminopropyltrimethoxysilyl chloride (DMOAP),
using standard procedures.

The cell was mounted on a transmission observation
microscope, and a high-speed video camera with a 5-ms
resolution clock was used to record data onto videotape.
We estimated that the phase transition occurred in less
than 30 ms. A switch mounted on the jump valve was
found to give a good reading for t =0. Defect-tangle-
evolution observations were replayed from the tapes and
digitized for computer analysis. Simple image-pro-
cessing schemes were used to enhance the images and to
estimate the string density. We measured the depth of
the cells to be 158+ 8 pm for the hP=2. 00 MPa run
and 234~ 23 pm for the other three. All the data were
taken using a 10x objective, with a depth of field large
enough such that all defects anywhere between both sur-
faces of the windows were clearly identifiable. With
greater cell thicknesses, we found that identifying strings
became more dificult, because of occlusions and light
scattering.

Coarsening data were taken for pressure jumps of
h,P=2.00, 2.28, 2.62, and 4.69 MPa, from an initial
state in the isotropic phase with T =33 4- 1 C and
P=3.6 MPa. Data from ten jumps for each hI' were
recorded, and then pictures of the string tangle at vari-
ous times were digitized to be analyzed by the computer.
Four typical pictures of the string tangle in evolution are
shown in Fig. 1. Loop-collapse data were taken from the
same data, by selecting runs which happened to leave
nearly circular isolated loops at a late stage in the evolu-
tion of the system.

The guiding principle behind our application of image
processing to clarify the string-tangle pictures was to do
as little processing as possible before estimating the
string density. We used a four-step analysis, including
3x 3 median filtering, adaptive background subtraction,
Sobel gradient calculation, and a cleaning algorithm
similar to morphological dilation and erosion. Adap-
tive background subtraction was accomplished by divid-
ing the 512x400 images into 128&100-sized subimages,
calculating for each region the average of each of the
32x25 subregions weighted by its standard deviation,
fitting a 8 spline to the subimage points to get 512x 400
"background" images, and subtracting these from the
original images. The grey levels were then rescaled such
that the mean was a light grey and the standard devia-
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FIG. 2. String-density data, accumulated at four diA'erent
h,P. Plus symbols correspond to hP =2.00, triangles to
hP=2. 28, asterisks to hP =2.62, and diamonds to hP =4.69.
The dashed lines have slope —1. The scaling relationship was
experimentally determined to be g = t "—O02, where p= I/g .
For greater hP, the string tension is higher and one expects
from the analysis in the text for the scaling density to be lower,
as is observed.

t=2.9 sec t=4.8 sec

FIG. 1. A coarsening sequence showing the strings visible in

our 230-pm-thick pressure cell containing K15 nematic liquid

crystal, at t =1.0, 1.7, 2.9, and 4.8 s after a pressure jump of
AP =4.7 Mpa from an initially isotropic state in equilibrium at
approximately 33'C and 3.6 Mpa. The evolution of the string
network shows self-similar or "scaling" behavior. Each picture
is about 360 pm wide.

tion spanned the resolution of the display. This success-
fully normalized the light intensity across our images.
Finally, the string density was estimated from the pro-
cessed images by counting the number of points above a
set threshold. We chose to calibrate the string density so
that it represents the number of strings per unit area
crossing a plane. The calibration for each data set was
obtained by counting the number of strings crossing a
line drawn across the image, averaged over several lines
and images, and dividing by the cross-sectional area, i.e.,
the depth of the cell times the width of the image.

We found that for times between 1 and 32 s, the string
network was low enough in density for the strings to be
clearly distinguished. Our string-density results are
shown in Fig. 2. The statistical errors, obtained by av-

eraging over several runs, are smaller than the symbol
sizes. Repeating the experiment at increasing h,P, we
found the same scaling with time, but decreasing string
density at a fixed time, consistent with the eA'ect expect-
ed, where if the string tension is increased, so is the scal-
ing value of g.

The data do show systematic deviations from
straight-line behavior. We expect that at early times line
thickness (caused by the finite camera resolution) spuri-
ously lowers the calculated string density because of
string overlap, and that, at late times, image noise
significantly increases the density estimation (it is not as
detrimental to the early-time data, because the amount
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FIG. 3. The vertex density as a function of time for the
hP =4.69 run. The error bars indicate the statistical errors, by
averaging eight data sets. The solid line shows the expected
t ' scaling for the bulk.

of noise is constant, and the string density is higher for
smaller t). Omitting the first and last points in each
data set, a least-squares fit gives a scaling exponent of
v = 1.02 + 0.04, which is close to the predicted t
power law.

Interpretation of the data is, however, complicated by
possible finite-size eA'ects due to the interaction defects
with the window surfaces. We saw no evidence of pin-
ning of defects to the windows. Consequently, it may
have been possible for the defect tangle to pull away
from the windows and become concentrated in the center
of the cell. To check this possibility, we studied the evo-
lution of the number of string crossings. The vertex den-
sity should scale with the string density, as p, , a- p . Fig-
ure 3 shows our results from analyzing data from the
hP =4.69 MPa run. The data points at late times show
a consistent deviation below the t behavior expected
for a three-dimensional system whose line density is
given to scale as t '. However, at early times there is
good agreement.

A model for the deviation observed in the behavior of
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FIG. 4. Typical data showing the loop radius as a function
of to —t, where to is the time at which the loop disappears.

p, , vs t can be constructed by assuming that the cause is
a shrinking of the effective thickness d of the defect layer
in the pressure cell. Thus, by extracting d from the data
in Fig. 3, a correction for the proper string density p can
be estimated. Using this procedure, and fitting to the
linear regime in the corrected lnp vs lnt data, a corrected
scaling exponent of v, =0.93~0.06 is obtained. This
number can be understood as a bound on possible devia-
tions in bulk behavior for the coarsening exponent v, and
is reasonably incorporated as an additional contribution
to the error bars originally given for v. Our conclusion is
that the bulk scaling exponent for our K15 system is
v =1.02+ 0.09.

To check if the disclination line dynamics used to ob-
tain Eqs. (2) and (3) properly characterize the behavior
of disclination lines, we studied the behavior of collaps-
ing loops. Figure 4 shows data from a typical loop col-
lapse, for which the exponent was a =0.49 + 0.002.
Loop-collapse exponents were measured from seven
events for which the loops had an eccentricity less
than 0.6. The measured exponents were 0.544~0.002,
0.494+ 0.002, 0.497 ~ 0.006, 0.453 + 0.020, 0.443
+ 0.021, 0.520+ 0.005, and 0.522 ~ 0.053. Averaging
these results gives a =0.50+ 0.03, which is in agreement
with the expected value of 0.50. We found that loops did
not leave rnonopoles behind, nor did they collapse around
monopoles. Hence, these loops must have consisted of
equal numbers of + & and —

& string segments. Final-
ly, from Eq. (2), we estimated that T/I varied from
about 200 to 300 pm /s in the 5.6-8.3-MPa, 33'C re-
gime.
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