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Multifractals, Operator Product Expansion, and Field Theory
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We explore possible distinctions between multifractal scaling phenomena and Lagrangian field theo-
ries (FT) describing standard critical phenotnena, via the operator product expansion. While the scaling
dimensions x, of multifractal moments must be convex functions of the order n, analogous FT exponents
of powers of the field are concave, by stability and correlation inequalities, and cannot describe mul-
tifractal scaling. However, powers of gradients of the field may lead to a novel and unexpected mul-
tifractal convexity in a FT, as, e.g. , the nonlinear a. model.
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An outstanding problem' in statistical mechanics is to
find an analytical description of complex scaling systems,
like growth phenomena, critical disordered systems, and
strange attractors in dynamical systems. A distinguish-
ing feature of these complex scale-invariant phenomena
is the existence of a continuous spectrum of scaling in-
dices and a corresponding multifractal singularity spec-
trum f(ct). It arises from the nonlinear dependence
on q of the exponents r(q) of the moments of a mul-
tifractal measure p(r) (or local probability of events at
point r) defined by

g p&(r) -(a/R) '"',

where the sum extends over the support of the measure
of typical linear size R (a is a microscopic cutoA'). It has
been a challenge to calculate nontrivial functions r(q)
analytically. A related question' is whether the univer-
sal features of multifractals could be described by a (La-
grangian) field theory (FT), as for critical phenomena
(with conformal invariance in two dimensions ). Some
field-theoretic methods have been applied successfu11y to
multifractal phenomena, such as harmonic diAusion near
absorbing fractals, electron localization, random resis-
tor networks, ' and dilute ferromagnets, '' a nonexhaus-
tive list. A characteristic of these works (except Ref. 8),
however, is the use of an analytical continuation of some

Lagrangian FT (replica method), which leads to unusual
features, to be described below.

The aim of this Letter is to compare multifractals and
FT. We first provide a formal but unifying field operator
description of multifractal moments. Strikingly, mul-
tifractal correlations then follow the rules of an operator
product expansion. However, we show that these mu1-

tifractal moment operators are really distinguished from
analogous field power operators in a standard FT, due to
stability requirements in the latter. This is quantified by
a general inequality on scaling dimensions, the "8 cri-
terion, ' which distinguishes the multifractal from the I"T
operators. We finally suggest that powers of field de-
rivatIUes in a FT could escape this stringent criterion and
display multifractal behavior.

A natural way to describe multifractals in I"T terms is
to consider local random "events" O(r) building up the
measure p(r), such that their moments O't(r) scale like

p(r) =—,O'(r)—O(r) — a
(2

Z,O(r) ' R

where the overbar represents a space (i.e. , disorder)
average and where xq is the "scaling dimension" of Oq.
From (1) and (2), we get

r(q) =x, D —q(x) —D), —

where D is the fractal dimension of the measure support,
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associated with the total mass g, l—:M —(R/a), such
that D = —r(0), and xv=0. If only one (or a few) frac-
tal dimension is present, then all generalized (or "criti-
cal" ) dimensions D(q)=r(q)/(q —1) reduce to D(q)
=D for any q. By (3) this corresponds to x~ =qx~, i.e. ,

gap scaling. In general, the r(q), like x~, are nonlinear
functions of q.

It is now very instructive to consider multifractal cor-
relations In .terms of events O(r) and dimensions x~,
the scaling factorization proposed by Cates and
Deutsch" reads

where ri2 =ir, —r2i «R, and

8 =xp+q xp xq .

%e restrict ourselves to p, q ~ 0.
Consider now a given field theory describing the vicin-

ity of a critical point and its scaling operators 6;(r) of
dimensions x;. They satisfy the operator product expan-
sion ' (OPE)

6;(r))6, (r2) =pc;,kr)p ' "Gg(r2),
k

where c;jk are universal, the sum being ordered such that
xk increases with k. By d-dimensional conformal invari-
ance, the critical three-point functions read

ClJk
Xi +Xj Xic Xj + X/( Xi X/( + Xi Xj~12

In the presence of a finite large length scale R (finite size
or correlation length g), each Gt, gets an expectation
value (Gk) =akR '"

(aq can vanish, e.g. , for symmetry
reasons). Hence for r~2=r(&R, Eq. (6) implies factori
zation of the two length scales r, R in

(6;(r)6, (0))=pc;,kat, r " "' "'R
k

If the identity operator 60 = 1 of lowest dimension xo =0
is present, we recover standard gap scaling (6;Gi)

Xi Xj—r ' 'asr 0.
Now, we remark that this OPE [Eqs. (6) and (8)] of

standard critical phenomena has a direct analog in rnul-
tifractal correlations: Associate abstract operators
6~(r) of a hypothetical field theory describing a mul-
tifractal to fiuctuating moments 0't(r) [Eq. (2)] via

(6 (r ~ )6 (r2) &
=O~(r )O~(r, )

Hence, multifractal moments (p, q) couple directly to
p+q, up to subleading operators Gk with xk & x~+q.
Being associated with a probability distribution, the con-
tinuous set x~ (q )0) is in general' determined by the
discrete x„(n 6 N*), on which we now focus.

Field theories involve infinities of scaling operators
with a nontrivial spectrum. Consider the fluctuating
field variable p(r) describing the local magnetization in

the d-dimensional Ising model, p(r) =L g; c t dcr;,

where the spins a; are coarse grained '" over a box of size
L, centered about r, with a &(L (&((=—R). Near the crit-
ical point, the fluctuations of p are described by an
eA'ective Lagrangian X=(Vp) +g p +gp . The nth
moment y "(r) has the scaling form'

(v "(r))t. =(L/a) ""f„(g/L),
(lo)

f, (y) =icky
k

where x ~ is the spin dimension (2x
~
=d —2+ rl ), and the

scaling function f„ is an expansion over the operators Gq
appearing in the iterated OPE (6) of a cluster of n

operators &p. Equation (10) exhibits gap scaling in the
critical limit y =g/L ~ (for coWO and xo=0), due to
the presence of the identity operator k =0 in the OPE
(6), while subleading operators give corrections to scal-
ing. Among these, there is the so-called normal-ordered
product (renormalized) operator 6„(r)=:p":(r) of di-
mension x„, which corresponds to the global scaling of a
cluster of n spins. For instance, :p: is the subtracted en-
ergy operator cra with xq ——(1 —a)/v=d —1/v. x„ is a
nonlinear function of n These .higher operators 6„(ir-
relevant in the renormalization-group sense for n high
enough) may be, for symmetry reasons, ,

' directly ob
servable In Eq. (10). this corresponds to a leading term
f„(y)-c„y " for y ~, so that (p")~ —L"" ""', and

gap scaling breaks down. This is the case of the spin-
wave operators of the XY model, 6„(r)=p"(r) =e'"
where 0(r) is a 2D rotator angle. The OPE of two such
6„,G„starts with 6„+„,as in the multifractal case (9).
Another striking example is given by polymers (self-
avoiding walks) with a star topology ' (Fig. 1). There, a
new scaling operator 6„(r) is associated with the singu-
lar core at r where n long polymers are chemically joined
together. The probability of approach at a distance r,
P„„(r),of two stars of n and n' arms (Fig. 1) is then
given by the OPE of operators 6„(r) and 6„(0). The

where angular brackets denote field averages. The valid-
ity of this form for integer p, q can be verified in those
multifractals ' ' ' which have been studied by FT
methods. Then the factorized multifractal correlation
(4) is just the expectation value of the leading term in
the OPE of the moment operators 6~ Gq,

pG(r) 6( )0-r '" "' "'G~+~(0)+. . .

n=3 Xg

I"IG. 1. Three- and two-arm stars approaching each other at
r, and the subtraction rule illustrating OPE (11).
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resulting fused object for r 0 is clearly a n+n' star;
hence

which we recast as

(1[(23)—(23)]4&~ (12)(34&+(13&(24), (i4)

~=xn+n' xn xn' —0 ~ (i3)

as opposed to (12). This generalizes directly to geome
trical critical properties of percolation and Potts clusters,
or O(n) models in their graphical representations. '

In the general case of composite operators like the
powers p" of the field in, e.g. , p theory, the singular
contributions due to gap scaling dominate in the OPE
the scaling behavior of the renormalized (cluster) opera-
tor:p":, as in Eq. (10). However, a &p field theory has a
Symanzik (polymer) representation in terms of repul-
sively interacting Brownian paths. Ultimately, their
short-distance repulsion, e.g. , that of the p" potential,
reAects itself in the important inequality x„~nx ~,

obeyed '
by the scaling dimension x„of operator:p":.

This convexity property, which excludes multifractal be-
havior as in (12), is related to the general correlation
inequalities. ' For example in the d-dimensional Is-
ing model, the four-spin connected correlation function
obeys the Lebowitz inequality ' (cr~ cr2cr3Q4), ~ 0,

P„„(r)-6„(r)6„(0)—r'6„+„(0),
with a contact exponent 8=—x„+„—x„—x, as in (9).

Now, because of the above formal analogies, can one
not derive the (continuum) spectrum xq [Eqs. (2) and
(3)] of multifractal moments from a (denumerable)
spectrum x„of composite moment operators 6, =:p":in

a Lagrangian field theory? We show that an essential
distinction actually seems to exist. It arises from the
convexity properties of the multifractal spectrum z(q) or
xq, which are incompatible with the stability require-
ments for a conventional FT.

Multifractals. —Exponents x~ are related to moments
(2) of a probability distribution, and therefore satisfy the
convexity' d xq/dq ~ 0. The "singularity spectrum"
f(a), the Legendre transform of z(q), satisfies f"(a)
=1/z"(q) = I/xz'~ 0; hence f(a) is convex, as required
for the standard saddle-point integration over the
"singularity strength" e. Since xo =0,

8 =xp+q xp xq ~ 0 (pq ~ 0),
implying decay of the correlation function (4) with the
distance r along the fractal support. (Notice that 8~ 0
iff pq &0.)

Critical phenomena. —For a "standard" field theory,
we state that the spectrum jx„] of field powers described
above [Eqs. (10) and (11)] obeys just reversed inequali-
ties. For (geometrical) critical systems ' like self-
avoiding star polymers, consider the short-distance ex-
pansion (11) which starts at level n+n' The pro. bability
of approach P„„(r)of two star cores (Fig. 1) must van-
ish as r 0, because of the short-distance repulsion of
the critical objects. Hence the contact exponent 0 must
be positive

where 1=a], etc. Consider this in the limit a =r23«r
=r~4&&R =r~2=r~i (Fig. 2). Then e=aqo3 (opo3& is
the subtracted energy operator with dimension x, =x2
(corresponding to:p: in the renormalized p theory).
Owing to (7) the critical three-point function on the
left-hand side of Eq. (14), positive by Gri5ths's inequal-
ity, reads

(o (0)e(R)o (r) ) = C~

Rx, ~R ~x, ax~ —x, ' (is)

where x =x~ is the spin scaling dimension. For r&&R
the right-hand side of (14) is (12)(34)=(13)(24)
=R . Hence the correlation inequality (14) implies
for r/R 0, x, —2x ~ 0, i.e., x2 ~ 2x ~, a rigorous in-
equality in any d. In 2D, Onsager values are x~ =q/2
=1/8 and x2 =2 —1/v =1, while in 3D (Ref. 22),
x~ =O.S2, x2=1.41. A similar convexity for higher-
order operators could perhaps be obtained from that of
the Ursell functions (o~ cr4„), ~0. Again, correla-
tion inequalities in a p FT express the repulsive proper-
ties of p potentials similar to that of star polymers
above. We now give physical examples.

Harmonic diffusion and polymers. Cates an—d Wit-
ten considered the Laplacian diA'usion field p near a
fractal absorber constituted by a random walk (RW) in
d =4 —e dimensions. Generalizing to the case where the
only chemically adsorbing sites are the multiple intersec-
tion points of order L of the RW, we find a multifractal
spectrum (3) of moments

FIG. 2. Energy operator e(R) and spins cr(0), o(r).

(6„)=Q"

broadening with L,

xt. „—xL )
= (n —I) [D (n) Dl—
= —Ln (n —1)e'/4+ O(e'),

where D =d 1.(d —2) is the fra—ctal dimension of the
active sites. Equation (16) obeys the multifractal in-
equality (12), as opposed to the scaling dimensions x„of
the usual n-arm self-avoiding polymer stars:' x„—nx]
=n(n —1)e/8+O(e ) [x„=(9n —4)/48 in 2D], satis-
fying repulsive FT convexity (13).

Pure and random magnets. —The convexity of ex-
ponents of ordinary critical phenomena is observed in the
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O(N) vector model in d=4 —e dimensions. For an
nth power of the order-parameter field p„a =1, . . . , A,
we have the scalar (renormalized) normal-ordered prod-
ucts (q ta): for which xp —mxp =6m(m —I)~/(N+8)+, or the traceless symmetric tensors p~ p„
with x„—nx) =n(n —I)s/(N+8)+ . . . Both obey the
FT convexity (13) and cannot describe multifractal mo-
ments.

On the other hand, ferromagnetic spin systems with
quenched disorder '' display multifractal (attractive)
convexity. There the local random variable 0 (the
"event") is the local magnetization (say on a lattice site)
in a fixed disorder configuration C, O(r) =(cr(r))@.
Near T„one has scaling

(cr(r))"=(6„(r))-g
where local operators G„(r) are those of a replica FT. ''
A perturbative expansion about the Q ~ 2 random 2D
Potts model gives'' x„—nx~ = yn(—n —1)/16+0(y ),
where 0~y =a(Q —2) (( I. Hence a random ferromag-
net typically exhibits multifractal behavior, '' i.e., in-

equality (12), in contradistinction to the pure Potts mod-
el. Convexity (12) expresses the known eft'ective attrac
/ion between replicas.

Can one fulftll 0 & 0 in a FT?—So far, we have seen
that operators like powers of the field cannot describe
multifractals in a stable Lagrangian FT, ultimately be-
cause of their short-distance "repulsion. " However, oth-
er classes of operators may not be repulsive, especially
those with derivatives. We illustrate these points with
the O(N) nonlinear a model in 2+e dimensions. Weg-
ner has recently calculated the dimensions x2, of scalar
gradient operators of the form Gq, =(6tr, 8tr, )', where

is the field, a =I, . . . , N. He finds x, =2s —s(s
—1)e/(N —2) +O(e ), and hence an attractiue convexi-
ty 0 & 0 for the a priori stable FT (N & 2). The above
result, for powers of gradients and not of the field itself,
could provide the first example of multifractal behavior
in a Lagrangian stable field theory But, just .because of
the downward bending of x2„ these operators could also
become releuant (xq, & d) for large s, and destroy the
usual fixed point of the nonlinear o. model, which
would then have to be reanalyzed entirely. If, on the
other hand, we consider the nth powers of the field z„
the leading scaling dimension x„=n(n+N —2)e/2(N
—2)+O(e ), associated with the traceless symmetric
tensors, still satisfies standard FT "repulsive" convexi-
ty (13) for N & 2. When crossing N=2, it changes to
"attractive" convexity (12). This can be directly traced
back to a change of sign of the fixed-point coupling

g =e/(N —2) + O(e ), and thus to the instability
g" &0, for N & 2. A similar (unstable) spin model de-
scribes multifractal Anderson localization.

In summary, we have provided a field-theoretic for-
malisrn for multifractals and stressed the role of the
OPE. For the field-power class, a 0 criterion distin-

guishes multifractal from standard critical behavior. It
can be applied to a variety of other physical systems, like
(multicritical) hexatic liquid crystals, " ' which can be
shown to be nonmultifractal, or to continuous moments
of Ising magnetization. However, classes of derivative
operators may lead to an unexpected multifractal behav-
ior in a (stable) FT, which is far from being understood.
In particular, it would be interesting to know the spec-
trum of operators (Vp) ' in a p FT.
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