ERRATA

Total Hadronic Cross Section in e^+e^- Annihilation at the Four-Loop Level of Perturbative QCD [Phys. Rev. Lett. 66, 560 (1991)]

Levan R. Surguladze and Mark A. Samuel

There is a minor misprint in Eq. (16). A minus sign is missing. Equation (16) for $\beta_{OED}(\alpha)$ should read as follows:

$$\beta_{\text{QED}}(\alpha) = \frac{4}{3}N\left(\frac{\alpha}{4\pi}\right)^2 + 4N\left(\frac{\alpha}{4\pi}\right)^3 - N\left(2 + \frac{44}{9}N\right)\left(\frac{\alpha}{4\pi}\right)^4 - N\left\{46 + \left\lfloor\frac{832}{9}\zeta(3) - \frac{760}{27}\right\rfloor N + \frac{1232}{243}N^2\right\}\left(\frac{\alpha}{4\pi}\right)^5.$$
 (16)

This result was first reported by Gorishny, Kataev, Larin, and Surguladze.¹

An independent calculation of $R(s) = \sigma_{tot}(e^+e^- \rightarrow \gamma \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ has recently been completed by Gorishny, Kataev, and Larin.² Their results agree completely with our results given in Eqs. (10)-(13), provided one replaces the coefficient $\frac{4}{3}$ in the second-to-last term of Eq. (10) by C_F . This is a nonessential difference since, for the usual gauge group SU(3), $C_F = \frac{4}{3}$.

¹S. G. Gorishny, A. L. Kataev, S. A. Larin, and L. R. Surguladze, in Proceedings of the International Seminar Quarks-90, Telavi, Georgia, U.S.S.R., May 1990 (unpublished); Phys. Lett. B (to be published).

²S. G. Gorishny, A. L. Kataev, and S. A. Larin, in Proceedings of the First International CERN-IHEP-JINR Workshop on the Standard Model and Beyond, Dubna, 1-5 October 1990 (unpublished); Phys. Lett. B (to be published).

Response of Manifolds Pinned by Quenched Impurities to Uniform and Random Perturbations [Phys. Rev. Lett. 66, 1473 (1991)]

Yonathan Shapir

In the abstract, $p < L^{-1/\phi_p}$ should be $p < L^{-\phi_p}$.

On p. 1475 (right column), in the first line of the second paragraph, $\zeta(D) < (D-4)/4$ should be $\zeta(D) < (4-D)/4$. On p. 1476, the line preceding Eq. (17), $\sim pL^{[D+(1-\beta')\zeta]/L}$ should be $\sim pL^{[D+(1-2\beta')\zeta]/2}$.

In the last equation on p. 1476, the right-hand side, $-\beta'\zeta/2$, should be $-\beta'\zeta$.

In the fourth line from the bottom, left-hand column (p. 1476), $\beta' < \frac{3}{2}$ should be $\beta' < \frac{3}{4}$.

Finally, the acknowledgments were omitted: Useful discussions with M. Kardar, T. Nattermann, and Y. C. Zhang are gratefully acknowledged.