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Streaming Instability of Aggregating Slime Mold Amoebae

Herbert Levine and William Reynolds
Department of Physics and Institute for Nonlinear ScienceU, niversity of California, San Diego, La Jolla, California 92093

(Received 13 November 1990)

%e propose a new model of aggregation in the cellular slime mold D. Discoideurn. Our approach cou-
ples the excitable signaling system to amoeba chemotaxis; the resultant system of equations is tractable
to analytical and numerical approaches. Using our model, we derive the existence of a streaming insta-
bility for the concentric target aggregation pattern.

PACS numbers: 82.20.Mj, 05.70.Ln, 87.22.—q

Pattern formation in excitable reaction-diAusion sys-
tems is a phenomenon common to both physical and bio-
logical sciences. In the physics community, excitable
systems have been the focus of research for a number of
years within the context of the Belosuv-Zhabotinskii re-
action ' and more recently in the study of the catalysis of
CO on Pt surfaces. In biology, excitability is exhibited
by many systems, including waves of cyclic adenine
monophosphate (cAMP) in aggregating colonies of the
slime mold Dictyostelium Discoideum This . system is of
great interest to biologists investigating basic mecha-
nisms of cellular interactions. This process provides a
proving ground wherein techniques developed for the
analysis of physical systems can lead to insights on the
mechanisms governing biological phenomena.

During the aggregation of Dictyostelium, the starva-
tion of an individual amoebae sets into motion an elab-
orate system for the production of the signaling agent
cAMP, controlled by receptors on the cell surface. The
chemical signal causes the cells to move toward a com-
mon site as a precursor to slug formation, stalk growth,
and sporulation (see Fig. l). There have been several
simulations of the aggregation process, using various
models. There has, however, been little investigation of
the fundamental issue of the stability of the fully de-
veloped nonlinear signaling system. Previous investiga-
tions have only considered the stability of a uniform dis-
tribution of cells and cAMP, which is not the relevant
base state for the aggregation process. Here, we will in-
stead consider the stability of a steady-state pulse of
cAMP over a uniform cell density background to a per-
turbation in that density field.

Various models have been put forth to explain the de-
tailed chemical kinetics of cAMP signaling; we will focus
here on the "receptor box" model introduced by Martiel
and Goldbeter. Each cell has on its membrane 10
cAMP receptors, each of which can be in one of four
states (bound or unbound, activated or deactivated). In
the presence of low levels of cAMP, receptors tend to go
active, awhile at high cAMP levels, they tend to deac-
tivate. The activated receptors are postulated to initiate,
upon binding to extracellular cAMP, an autocatalytic
cAMP production mechanism within the cell. This

chemical is then released from the cell and, via diA'usion,

can activate other cells. Meanwhile, a high level of
cAMP is created, which then deactivates the receptors,
which in turn causes the cAMP level to drop, thus grad-
ually reactivating the receptors. In this manner, sus-

tained nonlinear oscillations of cAMP are possible.
The final kinetic equations of this model are quite

similar to those found in other excitable media. The
two variables, r and y, representing the fraction of ac-
tivated receptors and the normalized concentration of
cAMP, respectively, react on diAerent time scales ~hose
ratio is t.', a small quantity. If spatial variation of the
two species is considered, then after accounting for
diA'usion of cAMP, one is led to a reaction-diA'usion sys-

FIG. 1. Photograph of aggregating fields of D. Discoideum.
Note the spiral signaling patterns and the onset at the aggrega-
tions' edges of the streaming instability.
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The diH'erential equation (6) is supplemented by

TABLE I. Parameters for the Martiel-Goldbeter kinetic

equations [Eq. (3)].

This set of equations has been used to study spiral pat-
terns in two dimensions by Tyson et al. ; a typical set of
parameters taken from this work is given in Table I. Of
course, all these parameters are dependent on the cell
density, which for the moment is taken to be a constant.

Following a general approach for excitable media
developed elsewhere, ' ' ' this system can be greatly
simplified. Because e is small, the system will admit a
periodic wave solution in the form of excited regions fol-
lowed by quiescent ones, separated by thin reaction zones
("interfaces") of width e. The reaction-zone solution is

determined by solving the first of Eq. (1) at fixed r; this
yields a relationship between the normal front velocity c„
and the local value of r,

u(r) =c„+ex, (4)
for interface curvature x.. A graph of the function u(r)
is given in Fig. 2(a). In each of the two "smooth" re-
gions, the kinetics are linearized around the value of r
corresponding to zero velocity (the "stall" concentra-
tion). This reduces the full system to the piecewise
linear set

r+- =a ~r++b+ (5)
with a+ and b~ calculable from the original kinetics
(see Table II). The fast species is directly determined by
the slow-species concentration, again with a piecewise
linear relationship,
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the boundary condition (4) at the reaction zone. One
can assume uniformly moving reaction zones at x
=0 ( —to + ) and at x =k+, —X (+ to —) and derive

the traveling-wave dispersion relation relating the widths

X+,' —k —of the quiescent and excited regions to the im-

posed velocity c =cox; this is shown in Fig. 2(b).
The signaling system is only half the story. The sys-

tem responds to the chemical signal with cell motion and
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FIG. 2. (a) Plot of the wave velocity u as a function of the
receptor concentration in the reaction zone. (b) Plot of the
widths of the quiescent, k —,and excited, A. +, phases as a func-
tion of the wave speed c.
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TABLE II. Parameter values (+ ) and density dependence
(I +. ) for the piecewise linear model in the + and —phases.

Parameter
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concomitant density changes. Modeling this coupled sys-
tem requires an understanding of chemotaxis. This pro-
cess has been studied in a variety of experiments' with
the following general conclusions: the cell reacts to
cAMP spatial gradients (above a threshold); the re-
sponse is a function of concentration that is much more
sensitive in the low-cAMP state and the cells continue to
move for approximately 100 sec after the gradient
passes. We generalize the above approach by allowing
the cell density p to be position dependent and satisfy the
continuity equation:

+V (pv) =0,

= —I v+

with the jump condition, across the zone from quiescent
to active,

[n v] = —(k-/c. )[y], (10)

where n is the normal vector.
Previously, we assumed fixed density. If we substitute

that solution into the chemotactic equation, we directly
determine the cell velocity v=vo(x)x. Once vo is found,
the solution of the continuity equation is

[c —vo(0) ]po
po(z) =

c —v o(x)

Since the cell velocity is typically a few percent of the
wave speed, the density is approximately constant, i.e.,
the wave dispersion relation is not greatly affected by
coupling to cell chemotaxis. However, this is not the
case for wave stability.

Let us consider a general two-dimensional perturba-
tion of the planar traveling wave. ' We introduce the re-
action zone shifts:

with cell velocity v.
We close the system by postulating

dv+ +
dE

= —1 v~+k+ Vy —,

where k+(&k —.This equation incorporates the velocity
decay and enhanced sensitivity in the quiescent phase.
For simplicity, we take k+ =0 and keep only the large
gradient of y which occurs as we traverse the reaction
zone. The above relationship can then be replaced by
the final form

ing this form into the density equation and using the ap-
proximation po(z ) =po, we find

po

&ox/c+ Q p + p (r+ ru)x/rI +N
2

+
C

(14)

I T

Cd„

Again, a+ are integration constants.
In the r equation, all of the parameters in the kinetic

laws depend on density. The coefticients in the piecewise
linear chemical model (5) will all have the generic form
Q =Qo+Q]6'p; the linear density dependences are calcu-
lated using the parameter definitions given in Ref. 6.
Their values are contained in Table II. These terms act
as sources for the shifted concentration Sr~(x). One
finds the general solution in terms of two additional un-
knowns, P ~, and the previously defined coefficients.

The ten unknowns a~, P~, Sv„~,Bv~ ~, 6'o, and 6~

are determined by applying the boundary conditions. In
detail, we have Eq. (10) and continuity of v at the jump
from active to quiescent phases; Eq. (4) for the chemical
concentration at both interfaces; and flux conservation
requiring continuity of p(v. n —c„).Also, the function u

which enters in (4) must be expanded to linear order in

Bp. These conditions determine ten linear equations for
the ten (complex) coefficients; the assumed growth rate
co enters explicitly in this system. Setting the deter-
minant to zero gives rise to a highly nonlinear equation
for the allowed values of m.

At q =0, there is a translation mode co =0. As q is in-
creased, we can follow this solution branch by using
Newton's method with the result at the previous q as the
initial guess. We have done this analysis for the parame-
ters given in the tables, at dimensionless velocity equal to
1.746 (corresponding to physical velocity 8.5 pm/sec and
oscillation period 5 min); the result is shown in Fig. 3.

oeiqyemt x g+ + g&eiqyemt

There will be similar shifts in the fields r+, v+, and p+.
Dropping the common factor e'qye"', we find for the cell
velocity

—0 2 4 6
Wavevector (dirnensionless)

6v+-(x) =(x6v„+-—iy/iv~ ~)e'"+ '"/', (13)

with constants of integration Bv +- and By +. Substitut-

FIG. 3. Plot of the numerically calculated real, co„, and

imaginary, co;, parts of the growth rate of the perturbation as a
function of the wave vector of the perturbation, q.
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There is a positive growth rate for all q less than some
cutoA at around q =8. We have checked that there are
no other modes with larger Redo. By varying several pa-
rameters, we have verified that the occurrence of positive
growth rates is a generic feature of our system. Thus,
the wave pattern is unstable to the formation of trans-
verse structure, possibly with nontrivial time dependence
since some unstable modes have ImtoeO.

What is the physical cause of this instability? It is

easy to check that the wave pattern without coupling to
density fluctuations is stable. Here, though, the efI'ect of
a local density increase is enhanced e%cacy of the signal-
ing system. This in turn drives chemotaxis towards this
site, further increasing the density. As long as the spa-
tial scale of the Auctuation is large enough to prevent the
curvature term in (4) from being dominant, the Auctua-
tion will grow.

Let us compare our results to what is seen experimen-
tally. '" Several hours after initiation of signaling, the
concentric target pattern of aggregating cells begins to
break up. The cell density loses its axisymmetry and the
cells begin to form high-density streams which "fiow" to-
wards the central site. In our theory, this is not a transi-
tion to instability but instead the growth from an initial-
ly small amplitude of an always unstable set of modes.
We thus claim that simple aggregation patterns must in-
variably become more complex. Note though, that the
instability s typical growth rate in dimensionless units is
0.25, which in physical units is about 100 min. One
would therefore expect to see simple signaling occur over
many periods before the instability grows to a percepti-
ble level. Unfortunately, it seems impossible at this
point to make a precise quantitative comparison; the ex-
perimental results regarding streaming are mostly pic-
torial. Similarly, we do not as yet know what will hap-
pen to our destabilized target pattern for long times.

It would be interesting to investigate this latter issue
via numerical simulation. ' There are, however, several
difhculties. The simple linear density dependence that
we have assumed here, while adequate for our linear sta-
bility analysis, is probably not su%cient for a full non-
linear model. It is also not clear whether the Martiel-
Goldbeter model itself is valid over a wide range of den-
sity. Another problem arises in the treatment of chemo-
taxis as the cells begin to aggregate. As the cells start to
pile on top of one another, a simple, exponentially decay-
ing velocity is not su%cient, and hydrodynamic efrects
probably must be taken into consideration. ' These is-
sues are currently under investigation.

In summary, we have introduced a coupled model of
chemical signaling and cell chemotaxis. We can calcu-

late the observed traveling wave pattern and can predict
its observed breakup. The streaming instability which
we derive is a generic feature of the aggregation dynam-
ics and governs the aggregation pattern on intermediate
(several hour) time scales. A full nonlinear theory which
would deal with patterns beyond the axisymmetric "tar-
get" structure must await further progress in modeling
the density dependence of the signaling and chemotaxis
systems.

We would like to thank W. Loomis for his useful sug-
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