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Kosterlitz-Thouless Transition in the Smectic Vortex State of a Layered Superconductor
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We investigate the relation between the vortex structure and the dissipation mechanism in strongly
layered superconductors when a large magnetic field is applied parallel to the layers. At high enough
temperatures the vortex lattice undergoes a transition to a smectic state characterized by a vanishing in-

terlayer shear. The elastic properties of this state lead to novel conditions for Kosterlitz-Thouless-type
behavior, resulting in an algebraic current-voltage characteristic down to vanishing current densities.

PACS nUmbers: 74.60.Ge, 74.60.Ec

The interplay between the vortex structure and the
pronounced intrinsic pinning in strongly layered super-
conductors such as Bi2Sr2CaCu20s (BiSCCO) has re-
cently attracted a lot of interest. ' A large critical
current density is obtained for the situation where both
the magnetic field and the current Aow are directed
along the Cu-0 planes. With the Lorentz force parallel
to the c axis, dissipation is initiated by an activation pro-
cess where a finite segment of a vortex (nucleus) jumps
across the superconducting layer. Such activated creep
phenomena depend in a nontrivial way on the underlying
vortex structure.

In this Letter we investigate the relation between the
vortex structure and the dissipation mechanism in

strongly layered superconductors. We show that the ex-
panding nucleus produces a string of dislocations within
the vortex lattice, which in turn leads to the confinement
of the nucleus. For high enough temperatures the vortex
lattice is expected to melt and the layered structure of
the material supports a smectic vortex state which is
characterized by a vanishing interlayer shear. As a
consequence the confining string "melts, "giving way to a
logarithmic interaction between the pancake vortices.
This logarithmic interaction is preserved even at large
distances as it is due to the elastic properties of the smec-
tic state and leads to a novel Kosterlitz-Thouless-type be-
havior.

Intrinsic pinning in layered superconductors has been
studied both experimentally and theoretically. A partic-
ularly puzzling result is the independence of the resis-
tance upon the angle 6 between the magnetic field H and
the probing current density j (j,HJ c) as reported by
Woo et al. ' and by Iye, Nakamura, and Tamegai. ''
Kes et al. ' have suggested that a finite field component
perpendicular to the layers might explain these findings,
whereas in our approach the field is mainly directed
parallel to the superconducting layers. We will give
some comments on this phenomenon below. For mod-
erate magnetic fields and j&H, Chakravarty, Ivlev, and
Ovchinnikov' have shown that the single-vortex nucleus
is confined at low current densities in the case of a vortex

lattice and the activation of a vortex bundle leads to a
diverging activation energy at small current densities.
Without the concept of a liquid vortex state it seems to
be impossible to explain the activated Aux-fIow measure-
ments which show no divergent dependence of the activa-
tion energy on the current density. Here we study the
situation of high fields where the magnetic Aux is con-
centrated along the layers and where a new type of
Kosterlitz-Thouless (KT) behavior is found. Also, we

explicitly discuss the general case of an arbitrary angle
between the current Aow and the magnetic field.
Kosterlitz-Thouless behavior in layered high-T, . super-
conductors has been reported by various authors,
predominantly in moderate '" or zero' magnetic fields.

In the following we first discuss the nucleation process
for the case of a vortex lattice. The problem is formulat-
ed within dislocation theory which allows us to treat the
angular dependence in a straightforward way. We then
discuss the transition to the smectic vortex state which is
characterized by a vanishing interlayer shear. For the
smectic state, the elastic part of the activation energy
changes dramatically and a logarithmic dependence on
the size of the nucleus is found at all length scales. We
determine this energy using simple arguments based on
continuum elastic theory and also present a more careful
derivation using the London approach. We find that the
current-voltage characteristic is given by a power law
down to low current densities.

Consider the situation where a large magnetic field H
is applied parallel to the Cu-0 planes (see Fig. 1, we
choose a coordinate system with zllc axis, yllH). For a
magnetic field H=Hd =Co/2m 31 d the size of the unit
cell along the c axis equals the interlayer distance d.
Here, 1 =k, /k, b is the anisotropy ratio which is —3000
in BiSCCO (Ref. 16) and X„k,b=0. 14 pm denote the
London penetration depths for fields directed along the
Cu-0 planes and parallel to the c axis. When H is in-
creased beyond Hd the vortex cores start to concentrate
along each interlayer plane. For BiSCCO, Hp=5 T
(d =15 A) and the intralayer distance between the cores
is l =&o/Hd (l =2800 A for H =Hd). Upon application
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FIG. 1. Vortex structure for large magnetic fields H~ Hd
in a strongly layered superconductor. At high enough temper-
atures the vortex lattice melts and the interlayer shear modulus
vanishes, resulting in a smectic vortex state as illustrated
(drawing not to scale).
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FIG. 2. Nucleation process in the vortex lattice. The mov-

ing pancake vortices (vertical segments of the loop) generate a
string of three dislocations v —,v++, and v —along their path
with the total topological charge zero (drawing not to scale).

of a current j along the Cu-0 planes the Lorentz force
tends to push the vortices up. Because of the strong in-
trinsic pinning along the c axis, the motion has to
proceed via a nucleation process as shown in Fig. 1. A
finite segment of the vortex is activated across the lay-
er. ' The nucleus is bounded by two pancake vortices'
parallel to the c axis. The Lorentz force acting on the
pancake vortices drives them into opposite directions
such that the nucleus expands and the vortex moves up
by one layer.

Let us consider the energies involved in creating the
nucleus and in the expansion. We have to account for
three contributions; the magnetic energy E ~

g the work
done by the Lorentz force EI, and the elastic energy E,~.

(i) Consider first the magnetic energy between the two
pancake vortices separated by a distance R: For a strict-
ly two-dimensional system (no interlayer coupling,
k, =~) we obtain the magnetic energy E,. s(R) =2epd
&In(R/g, t, ), where ep=(@p/4+k, t, ) and g, t, denotes the
correlation length in the plane, g,b=38 A in BiSCCO.
(We neglect the core condensation energy E, =epd/2
since our calculation is only logarithmically correct. ) As
we turn on the Josephson interaction between the layers
(k„&~), the logarithmic interaction is cut oA' at
R=d JI . For R & dWI the magnetic interaction in-
creases like 1/R,

E s(R) =2epd[ln(d/g, ) —d Jr/4R], R (X, .

(ii) The second contribution is due to the driving Lorentz
force FL (see Fig. 1) which adds an energy El. (R)
= —j+pdR/c to the total energy of the nucleus. (iii)
The third contribution is the elastic energy produced by
the distortion of the vortex structure between the Cu-0
layers. Whereas the contributions E „. g and EL are of a
general nature, this third part depends crucially on the
vortex structure. We start with a discussion of the vor-

tex lattice. Depending on the angle 0 between the mag-
netic field H and the current density j, the Lorentz force
drives the pancake vortices to move past the vortex lines
in the planes. As a pancake vortex crosses one of the
vortex lines, a reswitching process rearranges the vortex
lattice such that a string of dislocations is produced
along the path of the moving vortex. The process is illus-
trated in Fig. 2. The string consists of three dislocations
8—,8++, and 6' with Burgers vectors p-, p++, and

P, —2P =P++ —(2l, 0,0), and dislocation axes v-
= v++ = v pointing along the path of the moving pan-
cake vortex. For an angle 6=0' (90') the dislocations
are pure screw (edge) whereas their character is mixed
for all angles in between. Let us estimate the elastic en-

ergy of the string: For 6 =0' (90') the defect involves
both shear along the z axis and tilt (compression) along
the y (x) axis. The shear energy density is e,
=c66(t)ult)z) /2=c66(l/d) /2, with u denoting the dis-
placement field along x and C66 the interlayer shear
modulus. ' Similar expressions hold for the tilt (e, ) and
compression (e,) energy densities. For the equilibrium
configuration the relevant elastic energies are equal
(e, =e, for 6 =0', e, =e, for 0 =90') and we obtain the
length scales for tilt and compression, t =d(c44/c66)'t
and c=d(c~~/c66)'t . The string contributes an elastic
energy E,~(R,8) =dR(ce, sin 0+te, cos 6) to the activa-
tion energy of the nucleus. Using known expressions for
the (nonlocal) elastic moduli

c ) ) (k) = c44(k) = (H /4') (1+X k +k k )

c66 =&pH/(8') ab ) 'r '",
we obtain the estimate E,~(R) =epR/JI independent of
the angle 6. Here we have used the Brillouin-zone
cutolfs k =2'/l and k, =tr/2d. In our expression for
the elastic moduli we have neglected corrections due to
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finite reciprocal-lattice vectors which become relevant
for wave vectors near the Brillouin-zone edge and there-
by underestimate somewhat the magnitude of E,~(R).

Summing up all three contributions we obtain the en-
ergy of the nucleus E E g+ EL +E ] The linear in-
crease of the elastic energy with distance R has to com-
pete with the energy gain due to the Lorentz force, lead-
ing to the confinement of the nucleus for current densi-
ties smaller than the critical value j~ =ceo/&pd JI. For
BiSCCO we find a value of j ~

—8 x 10 (1 —T/ T,)
Acm

In the above calculation we have neglected the barrier
for crossing and reswitching of the vortices. Consider
the case of a pure screw dislocation (6=0'). A simple
estimate for the reswitching barrier is given by the maxi-
mal elastic energy of the vortex before reswitching,
which is E, =col/JI. However, this is exactly the ener-

gy needed to produce the segment l of the string which is
already taken into account by E,~(R). Within the pre-
cision of our calculation we thus find no angular depen-
dence of the nucleation energy.

We have to conclude that for current densities j (j]
there is no dissipation due to single-vortex activation
across the layers as long as the underlying vortex struc-
ture is a lattice. However, for large enough tempera-
tures the vortex lattice is expected to melt. The resulting
smectic state (see Fig. 1) is characterized by a vanishing
interlayer shear modulus c66=0. When the magnetic
field is increased beyond 30', the shear modulus of the
lattice is exponentially suppressed by a factor of order

p exp( —p), p=zH/J3Hq, and the melting of the lat-
tice becomes even more favorable. The vanishing
shear in the smectic state leads to the melting of the
confining string. The vortices relax to the configuration
shown in Fig. 3 which is characterized by two pairs of
edge dislocations. Note that the type of dislocations
studied here represent magnetic monopoles if considered
as objects in isolated planes.

We have to recalculate the elastic energy contribution
to the nucleus for the smectic vortex state. A simple es-
timate can be found from dislocation theory, where the
energy of an edge dislocation pair separated by a dis-
tance R is given by (dl /2rr)c441n(R/i), showing the
well-known logarithmic dependence on distance R. For
quantitative results we recalculate the elastic energy
within the framework of the London model. The free en-
ergy of a system of vortices placed at positions Rp is

F= @p
I

d q I». I

'+ I», I

'+
I », I 'y(q)

(2~)' I+X2(q2+q,')+X.";q,' '

with

v(q) =g dRI, exp( —iq Rk).
and y(q) =(I+X,q )/(I+A. ,bq ). The term proportion-
al to I», I produces the magnetic energy of the two pan-

il

C

FIG. 3. Nucleation process in the vortex liquid. The vanish-
ing interlayer shear has led to the melting of the elastic string
present in the vortex lattice. After relaxation, a pair of edge
dislocations (magnetic monopoles) appears in each plane with
a logarithmic interaction between the two monopoles constitut-
ing each pair.

cake vortices discussed above. Here we are interested in
the elastic energy between the planes which is provided
by the terms I», I +I»~I . We integrate over q, and ob-
tain

(p 2

F —Em,, s= g J de dRM Q~ M(Rg —RM),
nm

O' M

with

exp[iq R —dINI(1+X, q ) '~ /k, t, ]

(2rr) ' (I +y2 2) 1/2

We denote by Rz the position of the nth vortex in the
layer N. Rz is a planar vector with components Rz= (nl+ ujv (nl, y ),y ). For a slowly varying displacement
field u~(nl, y) we can substitute the summations over n

and m by an integration and obtain for the quadratic
elastic energy the result

E,I= g d r~d r2Vu~(r~)Vu (re)
a'd'

1 6Rkab

x Qjv —M (qi r2) ~

The above expression does not depend on displacement
gradients along the c axis (u~ —uM) due to the absence
of interlayer shear.

The displacement field u~(i) can be split in two terms,
u~ =u/v+uj'v, where uj'v is the fIuctuating regular part of
the field which provides the liquid properties. The singu-
lar part u~ describes the four edge dislocations shown in
Fig. 3, u~(Rr =[s(Qr —s(r —R)J(8~ [ 6~ p) with s(QI

=(1/2n)arctan(y/x). Because of the condition V u~
=0 the contributions of the regular and singular parts
decouple. For large distances R)&dJI only small wave
vectors q«1/d JI are relevant and the interaction be-
tween the vortices becomes local. The elastic energy
shows the expected logarithmic behavior, E,~(R) =2epd
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x ln(R/dv I ). For small distances a linear dependence is

obtained, E,~(R) =eoR/Jl, R & dJI . Comparison with
(i) above shows that the logarithmic interaction smooth-
ly changes its origin from magnetic to elastic as we cross
R =dJI and persists to arbitrarily large distances

We substitute the elastic energy for the liquid into the
expression for the activation energy E„(R) and minimize
with respect to R in order to obtain the critical size of
the nucleus R, =2eoc/j@o and the activation energy
U=2eod In(2ceo/j@og, t, ). Typical values for BiSCCO
are R„=80pm and U=130 meV (a temperature T, —5

K and a current density j =10 Acm have been
chosen). The logarithmic dependence on the current
density produces the KT-type algebraic current-voltage
characteristic V-j' with a temperature-dependent
exponent a(T) =2eod/kttT. This simple expression for
a(T) is valid if a»1 and a jump Aa =2 is expected to
occur at the KT transition temperature, similar to the
one observed in the experiment of Ref. 15.

In the liquid state, the deconfining critical current
density j 1 introduced above becomes the crossover cur-
rent density separating the two regimes where the loga-
rithmic interaction is of magnetic (j & ji) and of elastic
(j & jl) origin, respectively. Note that for the zero- or
moderate-field cases the interpretation of the algebraic
current-voltage characteristic in terms of KT behavior is
limited by the condition j~ j~. In the high-field case
discussed above, however, KT behavior is expected over
the whole range of current densities down to very low
currents.

Regarding the angular dependence of the nucleation
process we have to take into account the reswitching bar-
rier which can be rewritten as E„=2J3eodHd/H. In or-
der to have a smooth diffusion process for generating the
nucleus, the reswitching barrier E„has to be smaller
than the thermal energy k~T. This is possible only for
su%ciently high magnetic fields; for BiSCCO, 0~ 15 T.
Thus we find that for large enough fields the reconnec-
tion ripple in the potential-energy landscape is small and
within our exponential accuracy there is no dependence
of the dissipation on the angle between j and H.

In summary, we have shown that the vanishing inter-
layer shear, characteristic of the smectic vortex state,
leads to the deconfinement of the single-vortex nucleus.
The relaxed excitation is characterized by two pairs of
edge dislocations which produce the logarithmic interac-
tion between the two pancake vortices at large distances
R &dJI. The elastic properties of the smectic state
provide the necessary conditions for the realization of
KT-type behavior at all length scales. For high enough
magnetic fields our model is able to explain (within ex-
ponential accuracy) the independence of the dissipation
upon the angle between the magnetic field and the ap-

plied current.
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