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Phase Diagram of the One-Dimensional t-J Model
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The phase diagram of the one-dimensional t-J model is investigated by analyzing the results of exact
diagonalization and the exact solutions at J/t=0 and 2. Phase separation takes place above a critical
value of J around JJt =2.5-3.5 depending on the electron density. In the small-J region, Tomonaga-
Luttinger liquid theory holds and its correlation exponents are calculated as a function of J/t and the
electron density. Superconducting correlations become dominant in a region between the solvable case
(J/t =2) and phase separation. A spin-gap region is also found at low density.

PACS numbers: 75.10.3m, 71.10.+x, 74.65.+n, 74.70.Vy

The t-J model is one of the simplest models for study-
ing strongly correlated electron systems and is a most
important problem for high-T, superconductivity. Al-
though high-T, cuprates are at least two-dimensional
(2D) systems, it is also interesting to investigate the
one-dimensional (1D) model. It is relatively easy to ex-
plore and, as Anderson recently claimed, ' 2D strongly
correlated systems could share some properties of the 1D
case.

Interacting 1D electron systems generally behave as
Tomonaga-Luttinger (TL) liquids in which the corre-
lation functions have power-law decays with exponents
which depend on the interaction strength. For systems
with spin rotational invariance, all the exponents depend
only on one parameter. Therefore the phase diagram for
these 1D models is determined by the calculation of one
correlation exponent as a function of electron density n

and the magnitude of the interaction.
For the 1D Hubbard model, the exact solution was ex-

plicitly obtained a long time ago for every value of n and
U/t Howe. ver, only very recently have the exponents in

the whole phase diagram been calculated, ' using a
simple relation between them and the spectrum of the
low-lying states. On the other hand, the 1D t-J model

H= —t g (c;t~~ +H.c.)+Jg (S; S/ ——,
' n;n~), (1)

(i,j)o (i,j)
defined on the subspace without double occupancy, is ex-
actly solvable only at J/t =2 in this notation, '' ' where
(i,j ) means the summation over nearest-neighbor pairs.
Therefore it is more dificult to obtain its phase diagram.
The purpose of this paper is to calculate it by using the
results of exact diagonalization, the exact solutions, and
various well-known results for diA'erent limiting cases.
Hereafter we set t =1.

In the limit of J 0, the t-J model is equivalent to the
U/t ~ Hubbard model, because first-order perturba-
tion theory around J=O and U/t =~ gives the same
ground-state wave function in both cases. The U/t
Hubbard model has rigorously been shown to behave as
a TL liquid. ' Quite recently it has been shown that
the solvable case (J=2) is also a TL liquid and the be-
havior of the correlation exponent has been obtained. '

Therefore, unless some instability occurs, the t-J model
behaves as a TL liquid. We will identify two such insta-
bilities: phase separation and the opening of a spin gap.
In the 2D case Emery, Kivelson, and Lin' discussed
phase separation in the large-J region. For 1D, we can
also expect such a phase separation. First, we discuss
the parameter regime in which it takes place and then
estimate the correlation exponent in the remaining re-
gion.

The Lanczos method is used to obtain the energies of
the ground state and a few low-lying excited states. By
examining the convergence of the energy levels, we
confirm that the lowest five levels are accurately deter-
mined (about 6 decimals). Figure 1(a) shows the
ground-state energy as a function of electron density n in
sixteen sites for values of J from 0 to 4. In order to
achieve systematic convergence to the thermodynamic
limit, we choose periodic boundary conditions for N
=4m +2 and antiperiodic boundary conditions for
N =4m, with N being the electron number and m an in-
teger. This removes accidental degeneracies so that the
ground state is always a singlet with zero total momen-
tum as for the large-U Hubbard model. We confirm this
analytically at J=2 and numerically for any J. The
finite-size curvature of the energy changes sign for
2.8 & J & 3.6, indicating that phase separation takes
place in this region.

To estimate the boundary more precisely, we calculate
the finite-size equivalent of the compressibility

PC

N E (N +2) +E (N 2) —2E(N)—
(2)

IV 4

where E(N) is the ground-state energy with N electrons
on N, sites (n =N/N, ). This expression gives the true
thermodynamic compressibility unless a many-electron
bound state is formed. This is clearly not the case in the
TL part of the phase diagram. We show in Fig. 2 the
values of J, at which I/tc crosses zero for N, =10,12, 16.

In order to check the convergence, we compare the
sixteen-site results with the thermodynamic limit at the
solvable cases J=0 and 2. As shown in Fig. 3, the
compressibility becomes a well-converged quantity if we
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FIG. l. (a) Total energy, (b) charge velocity, and (c) spin
velocity as a function of electron density in sixteen sites for
various values of J. Dashed lines indicate the quantities in the
thermodynamic limit for J=O and J=2.

use Eq. (2) and the boundary conditions defined above.
Note that I/t~ becomes zero in the phase-separated re-
gion in the thermodynamic limit, because we calculate
the true ground-state energy. Therefore, apart from
finite-size eA'ects, J, gives an accurate estimate of the
boundary. Complementary estimates of J, can be ob-
tained using the Maxwell construction, and they are also
shown in Fig. 2. Taking into account the error bars on
these calculations due to the finite-size effect, the two
sets of estimates are in good agreement. We emphasize
that the essential features of the phase diagram are
clearly established. The slope of the line of phase sepa-
ration indicates that separation occurs between the emp-
ty phase (n=O) and a low-density phase. The latter
could be a state consisting of weakly bound electrons.
This behavior is consistent with a recent perturbative
calculation with respect to t/ J (Ref. 16) and with the re-
sults of a recent Monte Carlo calculation by Assaad and
Wurtz. A detailed comparison of the Monte Carlo re-
sults with Fig. 2 will be published elsewhere. '

Emery, Kivelson, and Lin ' discussed phase separation
in the 2D case. In lD it is possible to show, using simple
lower and upper bounds on the energy, that the total en-

ergy, at least for J & 8, is asymptotically linear in the to-
tal electron number, E(N) = —NJln2, i.e., in the 1D
Heisenberg energy per site. This means that in the
large-J region, the ground state at a given density is a
Heisenberg chain island (n=1) and an empty phase
(n=0). As J is decreased there are three simple ways of

FIG. 2. Phase diagram of the 1D t-J model determined
from the sixteen-site cluster calculation. The curves show the
contours of constant correlation exponent K~. They are calcu-
lated from a mesh of points similarly spaced in density in steps
of 0.2J. Solid symbols show the values where the inverse
compressibility crosses zero for 10 (triangles), 12 (squares),
and 16 (circles) sites, representing the boundary of the phase
separation. An alternative estimate of the boundary is ob-
tained by the Maxwell construction. In this criterion phase
separation takes place between n =0 and the critical value of n,
n, , at which E(N)/N has a minimum. Solid bars represent the
region of jwhere E(N)/N is minimum for each electron densi-
ty in the sixteen sites.
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FIG. 3. Results for sixteen sites compared with the asymp-
totic result (200 sites) for the inverse compressibility (squares),
charge velocity (circles), and the resulting exponent (trian-
gles).
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destroying the fully phase-separated state. For inter-
mediate J, phase separation can survive with an
electron-rich phase with n —1 and/or a hole-rich phase
with n-0. For example, in the spinless fermion model
with attractive interaction (t-V model), phase separation
disappears abruptly for all densities at a critical value of
the interaction (V/t =2). ' Alternatively, either phase
separation is destroyed first in the low-density limit
(n-0) or in the limit of small doping (n —1). In the
following we discuss these two possibilities.

In the first case, we estimate the critical value of J us-
ing the argument of Emery, Kivelson, and Lin. ' Con-
sider the state with complete phase separation and let
two electrons evaporate from the Heisenberg chain,
forming a singlet bound state in the region J & 2. (Note
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that phase separation takes place much above J=2.)
The loss of energy due to breaking two bonds is +2J ln2,
while the gain of energy is —J —4t /J. The latter is ob-
tained exactly by solving the two-electron problem for
the infinite chain. Considering the energy balance, we

obtain J, =2/J21n2 —1 =3.22. As pointed out by Em-
ery, Kivelson, and Lin, this variational estimate would be
exact if there were no bound states with more than two
particles. Note that within this assumption, the discon-
tinuity of the second derivative of the two-particle energy
with respect to J leads to a second-order phase transition
at J=2 for n —0.

In the second case, we have to balance the gain in ki-
netic energy with the loss of exchange energy due to in-

serting two holes in a Heisenberg chain. We calculate
the ground-state energy with N, —2 electrons in N, sites
relative to the Heisenberg energy in N, —2 sites. This
energy becomes negative for J & 3.14, 3.30, and 3.34 for
N, =8, 12, and 16, respectively. Although a small size
dependence remains, we estimate J, (n =1)=3.5 which is

greater than the estimate obtained previously from the
two-particle instability. This means that the fully
phase-separated state is destroyed first by introducing
holes in the Heisenberg chain. In this case the empty
phase with n=0 remains as one of the two components.
This is consistent with the phase boundary in Fig. 2 de-
rived from the calculation of the compressibility. Note
that this situation is the opposite of that discussed by
Emery, Kivelson, and Lin' for the 2D t-J model.

Next we estimate the correlation exponent of the TL
liquid in the remaining parameter region. To support
the statement that the system behaves as a TL liquid, we
calculate the central charge c which characterizes the
universality class of the model. In the TL liquid c=1 as
shown rigorously for the Hubbard model ' and the t-J
model at J=2. ' We obtain c by fitting the ground-state
energy as E/N, =e —tr(v, +v, )c/6N, at n =0.5 in the
clusters with N, =4, 8, 12, and 16. Here the charge and
spin velocities, v, and v„are determined from the excit-
ed states of the sixteen-site diagonalization as discussed
below. We find that c is almost constant (c—1.01) in

the region J=1.0 —3.0 where both v, and v, can be cal-
culated accurately. This confirms that no other instabili-
ty occurs at this density and the system behaves as a TL
liquid before phase separation. In fact, a spin gap opens
at very low density, but we discuss this instability later.
In the region J & 3.4, the size dependence of the
ground-state energy divers from the above formula, and
this is consistent with the phase boundary.

To estimate the exponent we use the relation

1

n x 2K'' (3)

which holds generally in the TL liquid ' where K~ is

related simply to all the correlation exponents: For ex-
4ikFr

ample, the charge-charge correlation decays as e /
r ' and the superconducting correlation decays as
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I/r ' with kF being the Fermi wave number of the
1+ 1/Kp

noninteracting system. To check the reliability of the
estimated values for v, and K~ in the sixteen-site cluster,
we study the size dependence at the solvable case (J=2).
We solve numerically the Lieb-Wu-type coupled equa-
tions for finite systems in Sutherland's formulation. ' '

Since one of the sets of quantum numbers (I,) represents
the charge degrees of freedom, the lowest charge excita-
tion with momentum 2'/N, is obtained by replacing the
largest I~ by I~+1. The charge velocity is calculated as
v, =(E~ —Eo)/(2x/N, ) with E~ Eo be—ing the charge
excitation energy. The comparison between the sixteen-
site result and the thermodynamic limit is summarized in

Fig. 3. The quantities v, and K~ converge smoothly to
their value in the thermodynamic limit. The maximum
error in K~ is less than 5%.

In order to identify which one of the energy levels in

the exact diagonalization corresponds to the lowest
charge excitation we compare the energies with E~ at
J=2. Then we follow that energy level to obtain the
charge velocity as a function of J. Figure 1(b) shows v,
derived in this way for various values of J. At J=O, it is
known exactly that v, =2sin(2kF), because the system
behaves as a gas of spinless fermions. Since the spin de-
generacy is lifted in the small-J region and there are
many low-lying states proportional to J, it is difticult to
identify the energy level corresponding to the lowest
charge excitation in this region. However, we can easily
calculate v, in the most interesting region (J & 1). v,
decreases monotonically as J increases. Similarly the
spin velocity can be obtained and is shown in Fig. 1(c).
At J=O, it should be zero. Although there is a large size
dependence in the low-density region, it is clear that v,
increases with J and should be zero in the low-density
limit for 0& J & 2.

Substituting the obtained charge velocity and
compressibility in Eq. (3), we plot the correlation ex-
ponent K~ in Fig. 2. Note that Kp has a 5% error at
J=2, as shown in Fig. 3. This finite-size eAect causes an
error of AJ-0.2. But the global features of the phase
diagram are not changed and are consistent with the ex-
pectations of Haldane. ' Recently Assaad and Wurtz
obtained K =1.0+ 0.3 at J=2.2 and n =0.5 which
compares favorably with Fig. 2. The exponent K~ takes
the value 2 in the limiting cases J=O for all densities,
n 1 for all J, and n~ 0 for J & 2 above which the
two-particle bound state is formed. All contours for
K~~ 1 should connect the two critical points J,—3.5,
n=l and J=2, n=O. Indeed, in the low-density limit
for J & 2, all the curves seem to converge to J=2 and
n=0. However, above J=2 it is difficult to determine
the phase diagram precisely, because K~ increases rapid-
ly near the singular region. In the high-density limit
(n —1), all the curves cross the line J=2 and tend to
converge to one point J, (n=l). The most interesting
result of this phase diagram is that there is a finite region
with K~& 1 between J=2 and the boundary of phase
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separation. According to the g-ology, K~ & 1 implies
that the superconducting correlation is the most diver-
gent (g2 (0). This is consistent with recent quantum
Monte Carlo simulations. ' '

As suggested by Haldane' a spin gap can open in the
low-density region for J & 2, if a gas of singlet bound
electron pairs is formed. We investigated this possibility

by extrapolating the energy of four electrons to the
infinite-size limit using the exact energies up to 113 sites
for J=2.0-4.0. Indeed, the estimated energy coincides
with twice that of the singlet bound state of two elec-
trons (i.e., —2J—8/J) for J =2.0-2.95 with an accuracy
of 10 t, above which a four-electron bound state takes
place. This shows that a gas of singlet bound pairs is

realized in the low-density region for J=2.0-2.95. To
put an upper bound on this phase, we study the spin sus-

ceptibility g, . When a spin gap opens g, converges to
zero. We calculate g, from the energy diAerence hE be-
tween the ground state and the lowest 5= 1 state as

g, =(2N, AE) ' at n = —,
' for N, =6, 12, and 18. Ana-

lyzing the size dependence, we found no evidence for a
spin gap at this electron density so that the singlet phase
is restricted to the very-low-density regime. Further cal-
culations are in progress to clarify the phase diagram in

the spin-gap region and will be published elsewhere. It is

also possible to have other phases between the singlet
pair gas and phase separation, such as a gas of four-
electron bound states. From the above analysis, howev-

er, the region of such large-molecule phases would be
very small in the space of (J,n) variables.

In conclusion, we have established the phase diagram
of the 1D t-J model. Although the detailed structure
around n=0 and J=2 requires a little further investiga-
tion, the global features are reliable. The fully phase-
separated state at large J is destroyed by dissolving holes
into the Heisenberg chain. In the remaining region, we

have calculated the correlation exponent of the TL
liquid. In the vicinity of phase separation, we have found

a region where the superconducting correlation is the
most divergent. In the low-density region and just before
phase separation, we find a phase of singlet bound elec-
tron pairs. The richness of the phase diagram is remark-
able.

This work has been supported in part by a grant from
the Zentenarfonds of the Eidgenossische Technische

Hochschule Zurich and the Swiss National Fund. We
are indebted to T. M. Rice and F. D. M. Haldane for
many illuminating discussions and thank W. Putikka, P.
A. Bares, G. Blatter, N. Kawakami, and D. Wurtz for
helpful conversations.

'P. W. Anderson, Int. J. Mod. Phys. B 4, 181 (1990); Phys.
Rev. Lett. 64, 1839 (1990).

2J. Solyom, Adv. Phys. 28, 201 (1979).
3F. D. M. Haldane, J. Phys. C 14, 2585 (1981); Phys. Rev.

Lett. 45, 1358 (1980).
4E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968);

C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).
5M. Ogata and H. Shiba, Phys. Rev. B 41, 2326 (1990); in

The Physics and Chemistry of Organic Superconductors, edit-
ed by G. Saito and S. Kagoshima (Springer, Berlin, 1990), p.
438; the first-order perturbation theory for the Hubbard model
was carried out in H. Shiba and M. Ogata, Int. J. Mod. Phys.
B 5, 31 (1991).

6A. Parola and S. Sorella, Phys. Rev. Lett. 64, 1831 (1990);
S. Sorella, A. Parola, M. Parrinello, and E. Tosatti, Europhys.
Lett. 12, 721 (1990).

F. D. M. Haldane and Yuhai Tu, University of California,
San Diego, report 1990 (to be published).

sH. J. Schulz, Phys. Rev. Lett. 64, 2831 (1990).
N. Kawakami and S.-K. Yang, Phys. Lett. A 148, 359

(1990).
' H. Frahm and V. E. Korepin, Phys. Rev. B 42, 10553

(1990).
''B. Sutherland, Phys. Rev. B 12, 3795 (1975).
'2P. Schlottman, Phys. Rev. B 36, 5177 (1987).
' P. A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567

(1990).
'4N. Kawakami and S.-K. Yang, Phys. Rev. Lett. 65, 2309

(1990).
'5V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev.

Lett. 64, 475 (1990); S. A. Kivelson, V. J. Emery, and H. Q.
Lin, Phys. Rev. B 42, 6523 (1990).

'6M. Uchinami, Phys. Rev. B 42, 10178 (1990).
' F. F. Assaad and D. %urtz, Eidgenossische Technische

Hochschule report, 1990 (to be published).
'sC. N. Yang and C. P. Yang, Phys. Rev. 147, 303 (1966).
'9F. D. M. Haldane (private communication).
2oM. Imada, in Quantum Simulations of Condensed Matter

Phenomena, edited by J. D. Doll and J. E. Gubernatis (World
Scientific, Singapore, 1990), p. 127; J. Phys. Soc. Jpn. 59, 4121
(1990).

2391


