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Dilution-Induced Order in Quasi-One-Dimensional Quantum Antiferromagnets
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We consider a quasi-one-dimensional spin S quantum antiferromagnet as a function of dilution x. We
show that in some regimes, dilution suppresses quantum fluctuations. For small enough interchain cou-
pling and integer S, the ground state is disordered for x =0, but antiferromagnetically ordered for
x & x, . We estimate that for large S, x, is exponentially small. This is a novel dilution-induced ordering
transition.

PACS numbers: 75.10.Jm

In a one-dimensional antiferromagnet, the quantum
fluctuations are so strong that even at zero temperature
there is no long-range antiferromagnetic order; for in-
teger spin (S) chains the ground state has exponentially
falling spin-spin correlation functions reflecting the ex-
istence of the Haldane gap AH, while for half-integer S
there is quasi-long-range order. ' In the presence of
weak interchain coupling, the quantum fluctuations are
somewhat reduced: For the case of half-integer spin, in

the presence of arbitrarily weak interchain coupling,
there is a low-temperature phase with long-range antifer-
romagnetic order and a finite Neel temperature T~. For
integer spin, long-range order occurs only for interchain
coupling strength greater than the Haldane gap. In this
paper, we discuss the phase diagram and the nature of
the order in a quasi-one-dimensional quantum antifer-
romagnet as a function of dilution x, where x is the frac-
tion of spins that are removed randomly from the system.
We show that for weak enough interchain coupling, dilu-
tion suppresses quantum fluctuations, as was originally
suggested in Ref. 3. In particular, we show the follow-
ing: (1) For integer S and small enough interchain cou-
pling so that the ground state is disordered for x =0, for
x & x, the system has an ordered ground state and a
finite T&. (x, is exponentially small for large S.) It
seems to us that this result is rather striking in that it
implies that quenched disorder, in the form of dilution,
can induce ordering, in the form of a broken symmetry
phase. (2) For the case in which the interchain coupling
is strong enough that the system has an ordered ground
state with zero-temperature sublattice magnetization not
too small compared to its classical value, the sublattice
magnetization is a decreasing function of x for small x.
(3) We make estimates of the magnitudes of the eA'ects

(1) and (2) as a function of the experimentally accessi-
ble parameters: the exchange coupling in the chain (Jp),
the interchain exchange coupling (J3), the dilution x,
and S. Our results are summarized in the qualitative
phase diagram shown in Fig. l. (4) As a by-product, we
obtain some new results for the system in the absence of
dilution.

The model we consider is the anisotropic Heisenberg
model:

H =g JoSn j Sn,j+i+ g J3Sn,j' Sm,j
nj )n, m)j

y =(I/trS) ln(Jo/J ) . (2)

Note that for large S it is possible to consider y —1, even
if J3«JO.
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FIG. l. (a) Schematic drawing of the zero-temperature
phase diagram for integer S. The dashed portion of the phase
boundary is drawn according to Eq. (9). (b) Schematic view
of the phase diagram for fixed values of y [corresponding to the
dotted lines in (a)]. The curves follow grossly from continuity
and from the facts that T/v must be a strictly increasing func-
tion of J3 for fixed x and must vanish at a critical concentra-
tion x, ~ x~.

where ~n, m~ runs over pairs of nearest-neighbor chains, j
labels the atomic site along a chain, and S„j are spin S
operators. Upon dilution, spins are removed from the
system at random locations. We assume that the ar-
rangement of chains is such that for x =0, the Neel state
is unfrustrated; i.e., the system lives on a bipartite lat-
tice. We will always assume that J3« Jo. It is useful to
define the dimensionless parameter
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zero interchain coupling, and integer S, the ground state
is disordered and unique and there is a gap h, ~ in the
spectrum. As discussed in Ref. 4, this gap is related to
the correlation length in an anisotropic two-dimensional
classical Heisenberg model with lattice constant a in the
"space direction" and a/cp in the imaginary-time direc-
tion, where we identify Jp/kT in the classical model with
S/2 in the quantum model, so

hH/Jp = 2ttA|S exp( —trS), (3)

gp(T) —Az(&p/d H ) {I—O(e '"t' )l, (s)

where gp=hcp/hH is the zero-temperature correlation
length and cp=2SJp/h is the spin-wave velocity. (For
the classical lattice model, 22=20~10. ) For SJp
»kT»AH, the staggered susceptibility can be comput-
ed as if the system were at its quantum critical point

and Ai is dimensionless. (Al is nonuniversal. If time
were truly discrete, then we could use the results for the
classical lattice model, A 1

= 100+ 30. ) For small S,
AH-Jp. (For S=1, hH =0.4Jp. ) So long as S J3 is
small compared to hH, the eff'ects of interchain coupling
are strictly perturbative and the ground state is disor-
dered. On the other hand, for J3 large enough, the sys-
tem is three dimensional and thus has an antiferromag-
netically ordered ground state and a finite Neel tempera-
ture. For integer S, the critical value of J3 can be es-
timated as the value at which perturbation theory
breaks down, i.e., when S J3—hH, or equivalently when

y y, —1. The ground state is disordered for y &y, and
ordered for y &y, . Since y depends logarithmically on

J3/Jp, and linearly on 1/S, we expect to find y &y, only
in systems with rather small spin, no matter how aniso-
tropic. If the transition is continuous, T~ rises from zero
as y is increased above y, . We estimate Ttv(y) in the
usual fashion in which purely one-dimensional Iluctua-
tions are treated exactly and the interchain coupling is
treated in the mean-field approximation. Thus, we con-
sider the staggered magnetization M(h, T) of a single
chain as a function of the staggered field h due to the
neighboring chains, h =zJ3M(h, T), where z is the num-

ber of nearest-neighbor chains and T is the temperature.
We then solve self-consistently for the staggered field.
T~ is the highest temperature at which this self-
consistency condition can be satisfied for nonzero M. In
the vicinity of T&, h is small so the self-consistency equa-
tion can be linearized. Thus, Ttv is obtained as the solu-
tion to the equation

1 =zJigp(Tlv ),
where go is the staggered susceptibility of the one-
dimensional chain. As with AH, for large S, gp(T) can
also be computed from the corresponding results for the
classical two-dimensional Heisenberg model in a strip of
width given by the thermal wavelength A, T =hcp/kT: For
k T« AH, and in units in which gp g = 1,

(go=~), so we can use results from conformal field
theory to deduce that (up to possible logarithmic
corrections)

(6)

Thus, for (y, —y)/y, —1, kTv —zSJ3. For kT»SJp,
the susceptibility takes on its classical value, gp(T)= —,

' a 'S Jp/(kT) .
For half-integer S, the one-dimensional model is gap-

less, so we expect Eq. (6) to be applicable at all tempera-
tures kT «SJO.

B. Dilution induce-d ordering, x~&&x & 0 and y &y, .—Consider the case of y» I and integer S, i.e., deep in
the quantum disordered regime, and study the effect of
finite dilution x & 0, but still x«x~ =0.7, where x~ is
the site percolation threshold. In zeroth order, then, the
system consists of a collection of isolated chain segments,
"molecules, " of average length 1/x. It is straightforward
to show' that all even-length chains have a unique,
S=O ground state while all odd-membered chains have a
spin S ground state which is therefore (2S+ I)-fold de-
generate. The zeroth-order ground state of the diluted
antiferromagnet is therefore highly degenerate; this de-
generacy is lifted by even the weakest of interchain cou-
plings.

Consider first the case of moderate doping concentra-
tion in which the typical chain segments (molecules) are
shorter than gp. Each molecule has a gap [i.e., the ener-

gy diff'erence between the ground state(s) and the lowest
excited statesl which is at least of order AH. So long as
J3« (the gap), the eff'ect of interchain coupling can be
studied using degenerate perturbation theory. The result
is a new, effective Heisenberg model

H "=+K,t,T, Tb (7a)
a, b

for the molecular spins T„which live on a random,
three-dimensional network, with sites a labeling the posi-
tions of the odd-membered molecules.

We now compute H " by perturbation theory in J3.
In particular, we will see that since the original model in

Eq. (1) is defined on a bipartite atomic lattice and is
thus unfrustrated, it follows that H " is unfrustrated as
well. First, consider the interaction between two odd-
membered chain segments that lie next to each other,
i.e., nearest-neighbor molecular "sites" a and b. To
determine the sign of K,b, it suffices to consider the Ising
piece K,t, of the interchain interaction. (Since the model
is spin rotationally invariant, the xy piece of the interac-
tion must equal the Ising piece, K;t, =K,"b =K,t, . ) We
thus need simply to compute the piece of the interaction
energy which couples the z component of the spins on
molecules a and b. Since T, determines the only pre-
ferred direction in spin space, the ground-state expecta-
tion value of the z component of the atomic spin on each
atomic site i of molecule a, m;(a), must be proportional
to the z component of the molecular spin, m,'(T;) =a,'
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x T,'. Thus,

a bK,b
—J3 Z„a;a;,

i Ca&b
(7b)

where the sum runs over the nearest-neighbor atomic
sites on the two molecules. We can compute the sign of
this interaction from a rather general knowledge of the
sign of m;. We speculate that in the highest-weight
ground state (i.e., T'=S), m; &0 for i on the more
numerous sublattice and m; & 0 for i on the other sublat-
tice; in other words, the ground-state magnetization of a
small odd-membered chain is staggered. It follows that
the interchain interactions between molecular spins favor
perfect ferromagnetic or antiferromagnetic alignment of
the molecular spins depending on whether both chain
segments have an excess of atomic sites belonging to the
same or opposite sublattice; the interchain coupling
favors alignment of the molecular spins consistent with
Neel ordering of the atomic spins. If an odd-membered
chain segment is completely surrounded by even-
membered chain segments, then to first order in J3, its
molecular spin remains uncoupled to the rest of the sys-
tem. However, there is a second-order interaction be-
tween second-neighbor molecular spins mediated by the
intermediate even-membered chain. Again, without loss
of generality, we compute only the Ising piece of the in-
teractions. The spin on site i of the even-membered mol-
ecule sees an external field of strength h; =J3[m,'(T;)
+m;(Tq)] due to the spins on the neighboring odd-
membered molecules a and b. Because the even-
membered chain has a unique, spin-zero ground state,
there is no change in the energy of the even-membered
chain segment to first order in h. However, the energy is
lowered to second order in h, since second-order pertur-
bation theory always decreases the ground-state energy.
Thus, to second order, the interaction energy between
the molecular spins is optimal when m,'(T;) and m; (Tb)
have the same sign; the eA'ective coupling K,b between
second-neighbor molecular sites a and b is also compati-
ble with perfect Neel order of the atomic spins. Of
course, there is some probability that there will exist
odd-membered molecules that have no first- or second-
neighbor odd-membered molecules. The spin associated
with such a molecule interacts only in higher order in J3.
They are, however, sufficiently rare that they can have
no eAect on the final order and we have not analyzed the
nature of their interactions with the rest of the spins.
The conclusion is that the interactions K,b between
molecular spins are compatible with perfect Neel order-
ing of the original atomic spins, and hence H " is un-
frustrated.

We now estimate the strength of the eAective interac-
tions between molecular spins, so as to obtain an esti-
mate of T~. Recall that we are considering the case in
which the length L —1/x of the typical molecule is short-
er than the zero-temperature coherence length
Therefore, we expect a power-law falioA' of ~m;~ as a

function of distance R; from the chain end, ~m;~ —S/R;;
the eA ective interactions between nearest-neighbor
molecular spins then can be easily estimated according to
Eq. (7) to be

K„„—J3S /L —J3S x.
Thus, the eAective molecular Heisenberg model is an un-
frustrated random network with antiferromagnetic and
ferromagnetic exchange couplings between molecular
spins and a moderate distribution of coupling strengths
with typical value —J3S x. The lack of frustration in-
sures that the classical ground state is ordered. Since the
distribution of the magnitudes of the exchange couplings
is not large, we expect that neither thermal nor quantum
fluctuations will be enormously enhanced by the disorder
and so the system will order at a Neel temperature,
kqT~ —J3S x, for x & I/(p.

For L & (p (x & I/gp), the situation is more subtle
since ~m;~ is no longer approximately independent of i,
nor is there a substantial gap in the molecular spectrum.
Both exact results" for the ANeck-Kennedy-Leib-
Tasaki model and numerical results on S=1 chains led
to the conclusion that in this limit, the staggered magne-
tization is exponentially small in the center of the seg-
ment and reasonably large, m —S/gp, only in a region of
width gp near the ends of the segment. In this case, a
spin S/2 must reside at the ends of the chains whether
or not the chain is odd (since the chain end of a long
chain cannot "know" whether it is the end of an even- or
an odd-membered chain). In the limit L/(p ~, the
ground state would become (S+1) -fold degenerate
since the coupling between the chain-end spins becomes
exponentially small.

Thus, the degenerate perturbation theory used above
breaks down; the spin at the right end of one molecule
and the spin at the left end of the next molecule along
the same chain of atoms will form a singlet due to
second-order-induced interactions of magnitude
—zgp(J3) g. No matter how small J3, for small enough
x these interactions will be large compared to the typical
first-order interactions between neighboring chains,

J3(pexp( —L/gp), which would fall exponentially with

L/gp I /xgp. Indeed, equating these two energies, we
obtain an estimate, valid for a =2xS(y —y, )» 1, for the
critical value of x at which the crossover from essentially
one-dimensional to essentially three-dimensional behav-
ior occurs,

x, -(I/gp)a '.
For y)&1 there exists a regime I/gp»x&)x, in which
the system is three dimensional but has a very broad dis-
tribution of exchange couplings. Here the ground state
may be ordered or, conceivably, quantum fluctuations
can lead to a novel disordered (random valence bond)
ground state. In any case, in the dilute regime, I/gp»x,
interesting local moment eAects will be observable at
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temperatures T & cFp/ktt, where the molecular spins are
certainly disordered. For instance, due to the large
dispersion in couplings between the spins on neighboring
chains, the susceptibility will be roughly of the form
7t(T) —x(S/2) /[T+ 0(T)], where

0(T)—xJ3(gpS) [I +0(J3((QS) /kt3T)] .

C. Effect of dilution in the regime of weak quantum
fluctuations, x~&)x & 0 and y&&y, .—For y &&y, and
x«x~, the effect of quantum fluctuations is small, and
the ground state is magnetically ordered with a sublat-
tice magnetization slightly less than the classical value S.
In this case, the first quantum corrections to the sublat-
tice magnetization can be studied within spin-wave
theory. In Ref. 3, Eqs. (11)-(14), a formal expression
was obtained for the dynamical transverse susceptibility
g(q, ru) for large S and for small x. From this, one can
easily obtain a formal expression for the sublattice mag-
netization m as an integral over g(q, ro). We have evalu-
ated this expression by a combination of analytic and nu-
merical methods. ' The result can be summarized as
follows:

m/S = [I ——,
' [y+O(1)]

—( I /2trS ) [A (x/tu ) +0 (x) ] +0(1/S )], (10)

where 24=0.73+ 0.04, u =J3/Jp«1, and, of course,

y = —(I/trS) lnu. This result is the leading-order result
for large S, and x«x/tu «1. Note, if we estimate y,
by extrapolating the first-order expression with x =0 to
the point m =0, the resulting y, is the same as that ob-
tained in Eqs. (4) and (5), y, =2. Also note that to lead-
ing order, m depends on x in the combination xtu, in

agreement with Ref. 3. Thus, the effect of dilution is
strongly enhanced by large anisotropy. The positive sign
of A4 implies that in this limit, dilution increases quan-
turn fluctuations, although, still, quantum fluctuations all
together remain small.

Along with the decrease in the T =0 staggered magne-
tization, we expect a corresponding linear decrease in TJv

with x(Jo/J3) ' '.
D. Near the percolation threshold, x-x~.—As x ap-

proaches x~, Tz must vanish, and classically it does so
continuously' as Ttv —(x —x~)' ', where t is the per-
colation-conductivity exponent and v is the correlation-
length exponent. This result could be affected by quan-
tum Auctuations since at x the transition occurs at
T=O. Previous calculation' reveal that no such eft'ect

occurs to first order in 1/S.
E. Comments on other experimentally accessible

quantities. —For y &y, and x, &x«x~, the Haldane
gap should be observable spectroscopically or in the
specific heat as a pseudogap, even though the ground
state has long-range antiferromagnetic order and, corre-
spondingly, gapless magnon excitations. For y &y„ the

very-low-energy excitations should be three-dimensional
magnons, whereas for energies greater than (JoJ3) '

they should be effectively one dimensional. A useful pa-
rameter to vary experimentally is the pressure, which
should have a large effect on y. It would be particularly
interesting to use this trick to explore the region of pa-
rameter space near y =y, and x =x„where novel quan-
tum critical phenomena are possible.
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Note added. —After the submission of this paper, we
received a copy of a paper by Haiwara et al. ' where
similar ideas were discussed and, in particular, experi-
mental evidence of the existence of spin- 2 states at the
end of a spin-1 chain were presented.
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