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Kinetic Growth with Surface Relaxation: Continuum versus Atomistic Models
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We introduce a geometrical interpretation to classify possible linear and nonlinear terms in the models
for driven growth with surface relaxation. A nonlinear differential equation, distinct from the Kardar-
Parisi-Zhang equation, is proposed as a relevant continuum model describing atomistic kinetic growth
under conditions of chemical bonding. The scaling relations among growth exponents that we derive
from a dynamic renormalization-group analysis are exact for a class of growth models with surface re-
laxation. The calculated exponents are in excellent agreement with our discrete atomistic growth simu-

lation.
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There has been much recent interest in kinetic growth
processes of surfaces far from equilibrium. ' The grow-
ing surfaces naturally evolve into self-similar structures
and the surface roughness or the interface width can be
described by the dynamical scaling form, for a system of
size L and at time t, W(t, L) =L'F(t/L'lp), with F(~)
=const [i.e. , 8'(L)-L' as t~ ~) and F(x)-x~ for
small x [i.e., iW(t) —t~ before saturation]. Most of the
growth models studied so far fall in the universality class
of the Kardar-Parisi-Zhang (KPZ) equation, ' which is

given by

8h = vV h+X(Vh) + tl,
I

where h (x, t ) is the height of a growing interface in

1=d'+ 1 dimensions (d' is the substrate dimension) and

g is the stochastic noise driving the growth.
The KPZ equation successfully describes many dif-

ferent growth processes such as the Eden model and
ballistic deposition. Our motivation in this work is to de-
velop a continuum growth model relevant for the techno-
logically important molecular-beam-epitaxy (M BE) pro-
cess, ' particularly at higher growth temperatures where
relaxation of the incident atoms (via rapid surface
diffusion) plays a dominant role in producing smooth
growth. It is well known that in the temperature range
of MBE growth desorption of atoms and formation of
overhangs and bulk defects is negligibly small. Under
ideal MBE growth conditions the growth equation must
obey a mass conservation law, leading to the continuity
equation 8h/8t = —V. j+g. Thus, the nonlinear term
X(Vh) in the KPZ equation is inoperative in MBE
growth.

In an eAort to better understand growth under a
chemical-bonding environment, Das Sarma and Tam-
borenea and Wolf and Villain have recently investigat-
ed a simple growth model in which the particles are ran-
domly deposited onto a substrate and subsequently relax
to nearby kink sites maximizing the number of saturated
bonds. They found that the growth exponents are given
by, in d =1+ 1 dimensions, tt = 1.5, P = 0.375, and

z =tt/P=4. These exponents are surprisingly consistent
with the linear surface

diffusion

equation under a
chemical-potential gradient,

h 4= —vV h+g,
I

(2)

where the noise g has a Gaussian distribution and
satisfies

(tl(I )tl(2)& =2D6 (xi —xp)8(t i
—t2) .

The dynamical exponents associated with Eqs. (2) and
(3) are tt =(5 —d)/2, P = (5 —1)/8, and z =4.

However, as pointed out in Refs. 7 and 8, there is no
obvious chemical-potential gradient in this manifestly
nonthermodynamical problem. It is not clear why the
growth process of the model is so close to this linear
dift'usion equation driven by the chemical-potential
difference. Is there a possible nonlinear equation
describing the MBE process? %e also note that, in the
atomistic model introduced by Das Sarma and Tam-
borenea, the atomistic diffusion follows an Arrhenius
activation behavior. At high temperatures (but below
the roughening temperature) the atoms at the kinks may
break bonds and hop around (both "up" and "down" be-
cause gravity is negligible). What equation may de-
scribe this process?

In this Letter, we elucidate the above issues by intro-
ducing a novel geometrical interpretation to study possi-
ble linear and nonlinear terms in the various models of
stochastically driven growing surfaces. In particular, we
address the issues of what physical process could con-
ceivably produce a V h term in the strongly nonequilibri-
um situation where the chemical-potential gradient is not
a useful concept and what the possible nonlinear terms
are to the lowest order. We identify a nonlinear
diff'erential equation, distinct from the KPZ equation, as
a possible continuum model describing kinetic growth
under ideal conditions of MBE. We establish the con-
nection between the continuum model and the usual
discrete atomistic growth model.

We assume that the surface height h(x, t) is single
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valued in x and its time dependence can be described by
its local derivatives,

h =f(Vh, V h, . . . )+tI.
I

(4)

Note that the invariance properties of the growing inter-
face (h h +const) disallow certain terms such as
V h, etc.

To better examine the physical origin of each term in

our growth equation [and, to establish a connection be-
tween the continuum growth equation as defined by Eq.
(4) with the actual discrete atomistic growth] we have
developed a geometric and graphical method as depicted
in Figs. 1 and 2. We note that any coarse-grained sur-
face morphology [with h(x, t) being single valued in x]
controlled by a general continuum equation of the type
of Eq. (4) can be decomposed into the four topologically
distinct basic building blocks shown as (a), (b), (c), and
(d) in Fig. 1. These building blocks can be combined to
form composite structures [e.g. , Fig. 2(a)] such as peaks,
valleys, and other structures. In Fig. 2 we show a typical
surface morphology and various corresponding local
derivatives, h, (Vh ), V h, V "h, V (Vh ), and V (Vh ) ' in

d =1+1 dimensions, which are the lower-order terms in

Eq. (5). The qualitative features of higher-order deriva-
tives in Fig. 2 are easily obtained from Fig. 2(a) if we
write as a model h = ho+ h ~ tanh(bx).

Based on the geometric forms of Figs. 1 and 2, we now
discuss the physical interpretation of each term in Eq.
(5). The term vV h with v&0 is positive near local
minima and negative near local maxima as can be seen
from Fig. 2(c). This implies that the valleys (peaks) will

receive more (less) particles than the average flux. An
equivalent description would be to say that the particles

The functional f= —8'H(h)/Bh+ f ~, where the first part
includes terms which can be derived from a "Hamiltoni-
an" while f~ is the rest. The noise tI satisfies Eq. (3).
Remembering that f is a scalar and considering only iso-
tropic growth, we can write down the following general
form for f:

f= vV2h —v)V h+X(Vh) +l)V (Vh)

+X,V. (Vh)'+

)h r)-h

(c)

landing on the peaks would tend to go down to the val-
leys. This is precisely the smoothening effect of gravity
as in the Edwards-Wilkinson' model which is Eq. (1)
with X =0. (Desorption has a similar smoothening eA'ect

to the lowest order as well. ) In fact, this term can be de-
rived from the Hamiltonian Hs„=fd x(v/2)(Vh) by
noting that —SH/8h = vV h. The physics of the gravita-
tional term is that any height difference costs "energy, "
acting, therefore, as a smoothening effect on surface
roughness. From Fig. 2(b), we see that the X(Vh) term
(with X & 0) of KPZ allows the steepest points in the
growth front to grow at faster rates by allowing bulk va-
cancies ' ' since Xfd" x (Vh ) & 0. We emphasize that
neither gravity nor desorption plays any role in MBE
growth, where the energy scale is set by atomistic chemi-
cal bonding so as to make gravity completely negligible,
and the growth temperature is usually low enough to
make desorption an exponentially weak process. Thus
we conclude that v=O for MBE growth, which is also
consistent with the existing numerical simulations in
d'=1 dimension. We have already argued that k =0 for
MBE growth because bulk vacancies and overhangs are
not allowed. We, therefore, contend that the v and the k
terms in f are absent for MBE growth.

The physical interpretation for the v&V h term [Fig.
2(d)] is more complicated because it has additional
structures with small positive (negative) regions near the
valley (peak). This is precisely the feature mimicking
the strong chemical-bonding situation of MBE where the
atoms can stick to kink sites rather than simply rolling
down to the local height minima (as in the V h term).
The corresponding Hamiltonian is H, h

=f d x(v~/
2)(V h) . The A, ~V (Vh) term [Fig. 2(e)] can similarly
be seen (for X~ & 0) to correspond to the situation where

(c) (d)
FIG. 1. Any small segment of the coarse-grained surface

must have increasing, decreasing, or constant slopes and thus
falls into one of the four topologically diAerent basic building
blocks as shown. The straight-line segments are just the topo-
logical extension of the two ends of the building blocks.

(cl )

FIG. 2. (a) A typical segment of surface by combining
building blocks (a) and (d) of Fig. l. (b)-(f) Various deriva-
tives of (a) as labeled.
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the particles landing at high steps (large derivatives) re-
lax to lower steps (smaller derivatives). We believe this
term may correspond to the "high-temperature" regime
of the atomistic model where the surface atoms at the
kink sites can break bonds and hop with larger probabili-
ty to steps with smaller height. This term does not ap-
pear in Refs. 7 and 8, where particles at kink sites are
not allowed to move. Finally, from Fig. 2(f) we note
that the V. (Vh) term is very similar to the V h term.
In fact, the corresponding Hamiltonian is H= f d x(Xq/
4)(Vh) . We believe this term to be a higher-order
correction to the V h process. Thus, although this term
is a mathematically relevant nonlinear term to the V h

term in our growth equation, we neglect it in the rest of
our consideration because we have been unable to identi-
fy any physical process given by the growth equation

h = —v|V h+X2V (Vh) +t) (6)
6t

without generating the V h term.
Based on the above discussion for the physical inter-

pretation of various growth terms, we now propose the
following as the relevant ideal MBE growth equation at
intermediate to high temperatures:

t
= —v|V h+X|V (Vh) +q. (7)

Equation (7) represents a meaningful (if highly
simplified) physical model for ideal MBE growth which
catches some essential aspects of real MBE growth.
Since the noise tl is given by Eq. (3), Eq. (7) represents
a situation of conserved current and nonconserved noise.
Thus, our growth model is fundamentally different from
the model studied by Sun, Guo, and Grant' with both
the current and the noise conserved. In their model the
total volume under the interface is conserved whereas in

our model atoms are continually coming onto the surface
from the incident flux as in the actual MBE growth.

The scaling behavior of the growth equation (7) can
be analytically treated via the dynamical renormal-
ization-group technique. ' Under a change of scale,
x e'x, t e't, and h e 'h, the coefficients in Eq.
(7) renormalize as, to the lowest order,

The critical dimension is d, =4 substrate dimensions
(d, =d,'+l =5 spatial dimensions). The exponents a
and z for d ~ d, are then given by

i.e.,

z —2e —d'=0,

z+a —4=0,

a =(4 —d')/3 =(5 —d)/3,

z = (8 +d')/3 = (7+d )/3,

(1oa)

(lob)

(1 la)

(1 1 b)

1 000 1

10—

which gives the exponent P=a/z=(5 —d)/(7+d). It
can be shown' that the hyperscaling relation (10a) is
exact (for d ~ d, ) for any growth equations with con-
served current and nonconserved noise (totally indepen-
dent of the detailed form of the current), whereas (10b)
is exact only for the specific form of Eq. (7) as a conse-
quence of the invariance of the equation under a trans-
formation. ' We mention that (10a) was earlier ob-
tained from a physical argument by Wolf and Villain
and (10b) was derived by Sun, Guo, and Grant. '

The physically interesting dimension for MBE growth
is d=2+1 where we obtain a= —', , P= —,', and z = —", .

The situation with d=l+1 is also physically realizable
in the context of adatom motion on vicinal surfaces with
steps and the corresponding exponents are a =1, P = —,',
and z =3. (Note that P= —,

' for d= 1+1 in our growth
model is fortuitously the same as the corresponding KPZ
case. ) We have verified (Fig. 3) our analytic results for
the exponents in d =1+1 dimensions by carrying out an
atomistic one-dimensional growth simulation within a
solid-on-solid model. The growth model involves random
deposition of particles at lattice sites. If the deposited
particle has two nearest neighbors it does not move any

dy] g) D 6 —d'= v] z —4+Ed
dl y]3 4d'

dD
dl

=D [z —2a —d'],

(8a)

(8b)

dX ]

dl
4 —d'~ +~ 3(d' —6) ~3

] d ] ~

dk] =),[z+ a —4], (8c)
dl

with ICd'=Su'/(2tr)" and Sd being the surface area of a
d'-dimensional unit sphere. The effective coupling con-
stant kl =(A. ~D/vi ) 't then Ilows under rescaling as

0.1
0.1 1 10 100 1000 10 000

t
FIG. 3. Simulation results (middle curve) of the surface

width 8 vs time t in logarithmic scale. System size L =10000.
Time t is equal to number of layers of growth. Top (p= —', )
and bottom (P = —,

' ) curves are drawn for reference.
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more (and stays at that site forever). If the particle is at
a kink site (i.e., with only one neighbor either to the left
or to the right), it moves to the nearest kink site with a
smaller step height (with the particle being allowed to
move either up or down as needed). This is in contrast
to Refs. 7 and 8, where particles at kink sites are not al-
lowed to move. If the particle is at a site with no nearest
neighbors, it diffuses to the nearest kink site within a
finite distance l («L). In Fig. 3 we show our simulated
surface width W against time on a logarithmic plot. Our
best estimates of the exponents from the simulation re-
sults are P =0.340~0.015 a =1.05+ 0.10. Simulations
for larger system sizes and for more complicated growth
rules are currently under investigation.

Usually the situation with the roughness exponente) 1 is considered unstable because, for large enough
system sizes, this implies that the surface will eventually
develop arbitrarily large vertical Auctuations with 8
»L. We believe this may be an unavoidable feature of
atomistic growth within the solid-on-solid model under
the chemical-bonding environment at low temperatures
(which severely restricts the ability of atoms to hop
around). Thus one may have to allow vacancies and
overhangs at low temperatures. We do point out, howev-
er, that at low temperatures where bulk vacancies and
overhangs become important (and the solid-on-solid
model may become invalid), the whole continuum ap-
proach based on a single-valued height function h(x, t)
becomes inapplicable and processes such as bulk
diffusion (which cannot be incorporated into the current
class of continuum models) have to be taken into ac-
count.

For the nonlinear equation (7), a =1 in d =1+1. Di-
mensional analysis shows that terms such as V (Vh)
cannot change the exponent and hence are irrelevant.
For the linear equation (2), a = —', in d =2. A number of
nonlinear terms could bring the exponent a very close to
1 in d=2. However, these terms may not be consistent
with the chemical-bonding model within the solid-on-
solid restrictions or their coefficients are perhaps so small
that one may need very large system sizes and very long
simulation times to see the crossover. Finally, if there
were some processes corresponding to the nonlinear
equation (6), dimensional analysis' gives the exponent
a & 1 for any physical dimension d ~ 2. This is the only
nonlinear term with fourth-order derivatives which can
give a (1 for d=2. These issues are currently under
further investigation.

In conclusion, we have introduced a geometrical con-
struct to physically understand the features of various
growth terms in the models for driven surface growth.
This enables us to identify a growth equation which may
be relevant to the atomistic MBE process under the
chemical-bonding environment at intermediate to high

temperatures. We have obtained the exact growth ex-
ponents a =(5 —d)/3, P =(5 —d)/(7+d) in d dimen-
sions. Our preliminary numerical simulation of an
atomistic growth model is in agreement with these pre-
dictions in d =1+ 1 dimensions.
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