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We use the fixed scale transformation method, developed for fractal growth, to investigate analytically
the nature of clusters in self-organized criticality (SOC). In two dimensions the clusters of sites involved
in a relaxation process turn out to be compact (D =2) because of the absence of eft'ective screening.
Therefore they are more similar to Eden-type clusters (possibly with a rough surface) than to those of
the usual fractal growth models. This result is in good agreement with the computer simulations and one
can conjecture that it should hold for any dimension. The critical state corresponding to SOC dynamics
is therefore of much simpler nature with respect to those of the usual fractal growth models.
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The class of cellular automata that go under the name
of self-organized criticality' (SOC) has attracted a large
interest within the physics community and beyond. The
reason is that these models reach a critical state as a re-
sult of their own dynamics without the adjustment of
external parameters. Strictly speaking, this intrinsic
criticality could be already observed in the standard
models of fractal growth like diff'usion-limited aggrega-
tion (DLA) or the dielectric breakdown model (DBM)
and also in other models like, for example, invasion per-
colation (IP). The SOC-type models are, however,
mathematically simpler than DLA and DBM because
they do not involve a long-range coupling field. There-
fore it is nontrivial to investigate what are the minimal
mathematical ingredients that can give rise to an intrin-
sically critical dynamics.

The activity in this field consists mostly of comput-
er simulations ' with relatively few analytical ap-
proaches. These have mainly referred to the distribu-
tion of cluster sizes that can be easily obtained by
mean-field arguments. In this Letter we show that the
method of the fixed scale transformation (FST), de-
veloped for fractal growth models, can be successfully
applied to study analytically the nature of clusters
(whether they are compact or fractal) in SOC models.
A cluster is defined as the set of sites involved in a relax-
ation process (avalanche). It is interesting to remark
that such a problem cannot be addressed by the usual
methods like the renormalization-group method. The re-
sult for the two-dimensional case shows that these clus-
ters are compact at all length scales. This implies that,
statistically, no empty regions of any size are left by the
growth process that generates the clusters. Therefore,
their fractal dimension D is equal to the Euclidean di-
mension d (D =d =2). This result is nontrivial because
the model has no length scale built in. It is also possible

to understand why there is no effective screening in SOC
models (contrary to the usual fractal growth models)
and to conjecture that these clusters should be compact
also in higher dimensions. In this sense the clusters are
more similar to Eden-type clusters rather than to those
of the usual fractal growth models (DLA and DBM).

These results are in agreement with the available com-
puter simulations and they suggest that the nature of
the critical state in SOC models is very diff'erent and
much simpler with respect to those of fractal growth
models. In fact, according to the present study the SOC
models, even if they show a power-law behavior for the
distribution of cluster size, they do not seem to give rise
to a real anomalous dimension. In this sense they appear
similar to an Ising-type model in which the exponent g,
that governs the anomalous dimensionality, is intrinsical-
ly equal to zero.

We consider here a particular SOC model that is best
suited for analytical study. ' This is not a restrictive
condition because its properties have been found to be
similar to several other models. Given a two-dimensional
lattice a quantity E usually named energy can be stored
on each site. At a time t (discrete) an input energy
BE (0 (BE«1) is added to a randomly chosen site at r,
such that

E(r, t+1) =E(r, t)+BE(r, t) .

E(r, t) thus assumes non-negative continuous values, and
this process repeats itself. One then assumes a limiting
threshold E,„=1 for the allowed energy on any site. If
at a given time t, the energy on the site r is E(r, t) ) 1, a
relaxation event occurs and the full amount of energy
E(r, t) is distributed, in equal parts, to its 2d neighbors.
The transferred energy, on its turn, acts as input energy
for the neighboring sites. A single input energy event
may trigger oA relaxation on a set of connected sites; this
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set is defined as a cluster. The boundaries are assumed
to be isotropic and, in the thermodynamic limit, at infin-

ity. We adopt free boundary conditions: E(bound-
aries, t) =0. By energy conservation, the transferred en-

ergy is eventually let out through the boundaries. We
also assume that the process of relaxation is adiabatic in

the sense that the system has to relax completely before
a new input energy is again introduced. This dynamics
leads intrinsically to a critical state with an average en-

ergy per site E,. ' In this critical state the probability
distribution that a relaxation event will involve a cluster
of size s is a power law P(s) =s ' (a= 1 for d =2) and
therefore clusters of all sizes can be generated.

In order to study the nature of these clusters we have
to consider them as the result of a growth process. Once
the growth process corresponding to SOC dynamics is
identified one can use it within the method of the fixed
scale transformation. This method is fundamentally dif-
ferent from the renormalization-group method and it is
based on two essential points. The first is the identi-
fication of the basic configurations that appear in a fine-
(or coarse-) graining process of the structure. In this
case the structure is formed by the cluster of sites that
have relaxed at least once. These sites are denoted by
black dots in Fig. 1. It is actually convenient to consider
the intersection of the structure with a line transverse to
the growth direction. In this case (as for DLA), for a
two-site cell there are just two configurations: type 1

with a black (relaxed) and a white (nonrelaxed) site and

type 2 with both sites black. The asymptotic probabili-
ties of occurrence of these configurations (C~, Cq) can be
obtained from the FST considering the dynamical
growth process. The fixed-point condition for the FST
expresses the invariance of the properties of the structure
with respect to displacements of the intersecting line.
The FST matrix elements M;~ correspond to the condi-
tional probability that a configuration of type i is fol-
lowed, in the growth direction, by a configuration of type

j (i,j =1,2). For example, in Fig. 1 we show the dynam-
ical process for the SOC model corresponding to a start-
ing configuration of type 2 (rectangle). We are going to
see that from this probability tree one can derive the ma-
trix elements M2~ and M22.

Actually the real matrix elements to be used should
arise from the convolution of the matrix elements
[M~~ (A,„)]corresponding to diA'erent environments (X„),
each weighted with the appropriate probability distribu-
tion,

M~ =g P (X„;C),C2) M~J (A,„),

where P(k„;C~,Cq) gives the probability that the grow-
ing zone considered is at a distance A,„ from another
branch of the cluster. In general, one has to consider ex-
plicitly these Auctuations of the boundary conditions in

order to compute the fractal dimension. In the present
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case, however, we begin with the simpler question of
whether the clusters are compact or fractals. If they
would turn out to be compact this would imply self-
consistently that P(ko) =1 and P(X„)=0 (n )0). This
means that the structure does not leave empty regions
because ko is the minimal length considered. In this case
it is sufticient to consider only the case of closed bound-
ary conditions (BC) (X =Xo).

By the same reasoning one can also show that if a ful-

ly occupied cell (type 2) is certainly followed by another

FIG. 1. Scheme of the probability tree for the calculation of
the matrix element M2z in the case of closed boundary condi-
tions. This matrix element corresponds to the probability that
a configuration of type 2 (enclosed in rectangle) with both sites
black (relaxed) is followed, in the growth direction, by a
configuration of the same type. The circled black sites are
those that have just relaxed, while the white sites are the candi-
dates for future relaxation. The numbers near white sites cor-
respond to the energy that has been transferred to these sites
by previous relaxations.
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fully occupied cell for k =X0,

M22(X0) = 1, (3)

then this implies self-consistently that P(X0) = 1 and
D=d=2. We will concentrate therefore only on the
case of closed BC (omitting the variable X) and consider
the following argument. If M22 will converge to the
value 1, this (closed BC) is the only boundary condition
one has to consider and the treatment is fully self-
consistent. If, on the other hand, M22 will converge to a
value smaller than 1, this will be an indication that the
clusters are fractals and our treatment will have a degree
of non-self-consistency proportional to the difference
1 —M22. This means that, strictly speaking, we should
also include the other types of boundary conditions in the
calculation. However, the closer the dimension to the
value 2, the less important are these extra types of BC.

For a single type of boundary condition (closed, X

=ED) the fixed point for the distribution (C~, Cq) is sim-

ply given by

Ci* =(I+Mi2/M2i) ', Ci +C2 =1, (4)

and the fractal dimension D is

D = I+1n(C~*+2C2 )/In2. (5)

Since M2] =1 —M22 it is clear that if Mph =1, one has
M2] =0 and one obtains C~ =0 and D =2.

We focus therefore on the study of the matrix element
M22. The scheme of this calculation within the FST
method is shown in Fig. 1. One starts from a config-
uration consisting of a pair of black (relaxed) sites. In
view of the fact that the boundary conditions are closed
(X =ED) this cell is followed on one side by another black
site. The growth process corresponding to further re-
laxations is considered only within the column above the
starting cell.

In order to compute asymptotic properties, the growth
mechanism should refer to an infinite cluster. As in the
percolation problem at p, the SOC process can generate
clusters of all sizes. We therefore have to complement
the rules of the SOC propagation of relaxation with a
condition of connectivity. ' In practice we have to make
sure that the process we consider would generate, in

principle, an infinite cluster. In this respect the first re-
laxation process is trivial and must occur with equal
probability in one of the two sites above the starting cell.
Suppose that this is the site on the left; then the relevant
side for the boundary condition is the right one as shown
in Fig. 1. The site that has just relaxed is encircled and,
as a technical simplification, we consider the problem as
strictly periodic so that, if an event occurs in the relevant
column, a similar event will also occur, at the same time,
in the adjacent columns (see Fig. 1). The white sites
are the possible candidates for further relaxation and the
numbers near them correspond to the energy that they
have received from the relaxation processes that have al-

ready occurred. The next relaxation process must occur
in one of these two sites or in both of them. In view of
the connectivity condition we have to exclude the possi-
bility that no relaxation will occur. In order to do this
we first compute the probability (non-normalized) for
each of these events and then we normalize the final
probabilities among all the events that correspond to
some relaxation.

The probability 8' that the white site that receives an
energy of —,

' will relax can be written as

r 1

W( 4 ) =J, P(E)dE, (6)

where P(E)dE gives the probability that this site had an
energy E before the addition of the extra energy 4 . The
probabilities for the various events P; (i =1,2, 3,4) corre-
sponding to the configuration at the top of Fig. 1 are
given by

Pi =W(4 )W( —,
' ), P2=[1 —W( —, )]W(4 ),

P, = W( -,
' ) [1 —W( -,

' )],
P.=[1—W(-.' )][1—W(-.' )].

(7)

Both P] and P2 give rise to the occupation of the empty
site above the starting cell, leading therefore to a con-

The meaning of these four possibilities is the following:
P] corresponds to the case in which both sites relax, P2
to the relaxation of the site on the right (denoted by —,

' )
and not of the one on the left. P3 corresponds to the re-
ciprocal situation and P4 corresponds to no relaxation at
all.

In order to satisfy the condition that the growth pro-
cess should not stop we have to exclude the possibility
that P4 occurs and normalize the other three cases ac-
cordingly. This gives the final probabilities P; (i =1,2, 3)
that will be used in the calculation of the matrix ele-
ments,

P= (g)

In order to compute these probabilities explicitly we
have to specify the probability density P(E) to be used
in Eq. (6). This should be the one corresponding to the
critical state. The simplest approximation, that becomes
exact for large dimension, is to use a Oat distribution
P(E) =1; E in [0, 1]. In the present calculations we will
use this distribution, but it is possible to show that the
use of different distributions, such as those discussed in
Ref. 8, leads to essentially the same results. In this
respect one may notice that the discussion of the absence
of eft'ective screening in SOC models (see later) is basi-
cally independent of the distribution used.

For the first nontrivial growth process shown in Fig. 1

we have

P = — P2=—3 9

2338



VOLUME 66) NUMBER 18 PHYSICAL REVIEW LETTERS 6 MAY 1991

figuration of type 2. In case P3 occurs one has instead to
consider further processes by a similar type of analysis.
If a site that has just received a certain amount of energy
does not relax it is no longer a candidate for relaxation
unless it receives some more energy. In such a case the
amount of energy that was not enough to produce relax-
ation is indicated in parentheses. These features are
properly taken into account in the calculation of the cor-
responding probabilities.

For the matrix element M2z we obtain finally

Mpp(I) = —'„=0.923 08,

Mp2(II) =M2p(I ) + )3
' ) =0.984 62,

M22(III) =M2p(II)+ —,
'

—,
' . —', —, =0.99200,

(10)

where the roman index refers to the order of the calcula-
tion and for the third-order term we have only con-
sidered the leading contribution (see Fig. 1).

From the results reported in Eqs. (10) there is strong
evidence that M2~ will eventually converge to the value
1. This implies that no holes are left by the SOC process
and therefore a compact structure is generated. In fact
one obtains M2~ =1 —M22 0, which inserted into Eq.
(4) leads to C~* =0, Cq =1, and therefore to D =d =2.

We have also computed explicitly the other matrix ele-
ment M ~~ in order to obtain explicitly the value of D at
the various orders of the calculations. This gives

D(I) =1.9353, D(II) =1.9878, D(III) =1.9936, (11)

and the extrapolation of this value to higher orders
strongly points to a convergency towards D =2.

One may wonder about the fact that for a proper
analysis of the fractal dimension one should use in the
FST the growth rules that are the asymptotic scale-
invariant ones corresponding to the given growth rules at
the minimal scale. '' In fact, in order to obtain the frac-
tal dimension D from Eq. (5), it is necessary that the dis-
tribution (C~, Cq ) is the same at all scales, and so
should be also the dynamical process that one uses to
compute the matrix elements. Here instead we have
used directly the growth rules corresponding to the
minimal scale. In this case, however, this point is not
relevant because the results show that a compact struc-
ture is generated already at the minimal scale and this
guarantees compactness also at any other scale.

In addition to the convergence evidenced by the ex-
plicit calculation, our analysis also allows us to gain in-

sight into the nature of the process. From Fig. 1 one can

observe that whenever empty regions are left, these re-
sults are very unstable because any perturbation from
higher-order processes will induce their relaxation. This
situation corresponds to an essential absence of screening
effects in the spreading of the relaxation process. Given
the general nature of this feature one can conjecture that
SOC generates compact clusters also in higher dimen-
sions. Therefore, this process is fundamentally different
from the usual fractal growth models (DLA, DBM, IP)
in which strong screening effects can be identified ' and
are crucial in the generation of fractal structures. The
SOC clusters appear instead more similar to Eden-type
clusters, compact and possibly with an irregular sur-
face.

In conclusion, the present study shows that SOC dy-
namics, even though it leads to a critical state with a
power-law distribution of cluster sizes, generates clusters
that are compact objects. Therefore, the SOC critical
state does not give rise to a real anomalous dimension
and it is, in this sense, of much simpler nature than the
critical states corresponding to the asymptotic behavior
of the usual fractal growth models like DLA and DBM.
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