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lattice being parallel to the cell axis. We use a classical
noise-reducing technique where a particle is added to
the cluster only when a number m of arrivals has been
recorded. For m =1, we recover the ordinary DLA mod-
el [Fig. 1(a)]. When m is increased, the axis of the
square lattice becomes the preferential direction of
growth and the DLA clusters are progressively trans-
formed into dendritic fractal patterns [Fig. 1(b)]. In a
given strip of width 8' we grow % aggregates with the
same number M of particles. M is chosen large enough
so that the characteristic size of the aggregate along the
growth axis Ox is much larger than W. We then count
for each point of the grid how many times it has been oc-
cupied by a particle of an aggregate. This number, di-
vided by N, gives r(x,y), the mean occupancy of this
point.

The histogram of mean occupancy along the growth
axis is found constant in the inactive region of interest,
as imposed by the cell translational invariance. ' ' '

Across the cell, all transverse occupancy profiles have a
maximum r,„at the center (y =0) and decrease to zero
at the walls (y = ~ W/2). For m=1, the transverse
profile is remarkably well fitted by r (x,y) =r
xcos (xy/W) [Fig. 2(a)]. For m ) 1, the profile shrinks
[Fig. 2(b)] and there is a wide gap on each edge where
r =0; in fact, the larger m, the narrower the transverse
occupancy profile. The mean width of the occupancy
probability distribution is found by determining the
points y

—on each side of the cell's axis which satisfy''

y
—(x) =

rmax

FIG. l. (a) A DLA cluster with m= I grown in a strip of
width 8'=64; the shaded region corresponds to the points of
the strip with mean occupancy r ) r(y )as computed with—
250 aggregates. (b) A noise-reduced DLA cluster with m =8.

Anisotropic Laplacian Growths: From Diffusion-Limited Aggregates to Dendritic Fractals
A. Arneodo, ' F. Argoul, ' Y. Couder, and M. Rabaud

' Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France
Laboratoire de Physique Statistique, Ecole Normale Superieure, 24 Rue Lhomond, 7523l Paris CEDEX 05, France

(Received 15 January 1991)

The statistical properties of anisotropic diffusion-limited aggregates (DLA) grown in a strip are inves-
tigated. The mean shape of these aggregates being related to the corresponding smooth SaAman-Taylor
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Fractal growth is obtained in various Laplacian and
diffusion-controlled systems;' the overall aspect of the
aggregate and its fractal dimension depend upon the
isotropy or anisotropy of the system. Despite many ex-
perimental and numerical ~aborts, there is still little
understanding of the anisotropy-induced transition from
isotropic to anisotropic fractal growth. The aim of the
present Letter is to provide a scaling description of this
morphological transition. Here, the reference system ex-
hibiting Laplacian or diffusion-controlled growth will be
viscous fingering, dendritic growth, and diffusion-
limited aggregation (DLA). Very generally, the first
two systems are unstable at a length scale l, which is of
an order of magnitude given by the linear stability
analysis of a planar front. For DLA, the small scale is
due to the grid mesh size. An important factor for the
growth is the cell geometry. A linear channel of width
W was originally introduced by Saffman and Taylor
(ST) for viscous fingering. In this geometry, smooth
fingers are observed for moderate values of the ratio
I,/W () —,

' ) and fractal structures for small values of
this ratio.

In the case of smooth fingers, a family of analytical
solutions parametrized by their relative width X was
found in the absence of surface tension. Two possible
selections are observed. Normal fingers (isotropic case)
tend to occupy half of the channel width (X=0.5).
Anomalous fingers (anisotropic case) have a radius of
curvature at the tip scaled on l, so that with decreasing
lJW, A, 0. There is a crossover between these two sit- ~ 8'/2
uations which depends upon the strength of the anisotro- «(x,y) dy .
py. For fractal patterns, we have shown previously' "
that in all cases (viscous fingering, dendritic growth, and
DLA) it was possible to define a mean profile by averag-
ing repeated runs of the same experiment. The surpris-
ing result is that the average profiles have the shape and
the selection of the stable solutions, thus undergoing a
similar crossover when anisotropy is introduced. In this
paper, we carry out a finite-size scaling analysis showing
how the dependence of the fractal properties on anisotro-

py is related to the selected smooth solutions.
Along the line of our previous analysis" we will con-

centrate on noise-reduced DLA clusters grown on a
square lattice in a strip between two rejecting walls, the
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FIG. 2. H istograms of the mean transverse occupancy
across a strip of width W=64 (0) and 256 (O) for 250 noise-
reduced DLA clusters. (a) Isorropie growth: m =1, the solid
lines correspond to a fit by r(y) =r,„cos , (&ay/W) (b) .Aniso
tropic growth: m=4.

The region of large occupancy is then defined by select-
ing only the points in the cell such that r(x,y) ~ r(y )—
(y

— being independent of x in the inactive region). As
shown in Fig. 1(a), the limit of this region is well

fitted ' ' '
by the ST solution of relative width

=(y+ —y )/W. For m= 1, we recover the X=0.5 ST
finger as the mean profile of unstable fractal DLA aggre-
gates. ' Unlike the isotropic case, ' for a given m & 1,
the relative width of the region of large occupancy de-
pends on the width of the cell. As illustrated in Fig.
3(a), when increasing W; X decreases to zero at a rate
which is m dependent. This crossover behavior indicates
that the eAective anisotropy in the growth process can be

controlled by either tuning the noise-reducing parameter
rn or changing the width 8 of the strip through the scal-
ing variable m'8. A good fit of all the data is obtained
by choosing v= —', . In Fig. 3(b) we show that the depen-
dence of k on m and 8'can be represented by the finite-
size scaling form

) =A(I/m'"W), (2)
where the universal crossover scaling function A(u)
behaves as A(u) =

2 for u» u, and A(u) —u '/ for
u && u„where u, is a finite critical value.

For anomalous fingers, the relevant quantity is the ra-
dius of curvature at the tip: p=X 8'/rr(I —X). It was
shown previously ' ' that the ST mean profile of noise-
reduced aggregates was also selected by its p. In Fig.
3(c) we present the radius of curvature at the tip of the
mean occupancy profile of noise-reduced DLA clusters
versus 8' for diA'erent values of m. For m =1, the obser-
vation that A, = 2 implies that p scales linearly on 8'
(p = W/2x). Very much like the stable compact fingers,
the fractal patterns are selected by the largest length
scale of the system, ' i.e., O'. For a given m & 1, p in-
creases initially with 8' up to some critical width 8'„
which depends on m, where it reaches a constant value.
For anisotropic DLA clusters, the width of large occu-
pancy is now selected by its radius of curvature at the
tip. '' This is precisely the selection mechanism of stable
anomalous viscous fingers and parabolic needle crystals.
In Fig. 3(d) we show that p satisfies the following finite-
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FIG. 3. Characteristics of the mean occupancy profile of 250 noise-reduced DLA clusters grown in a strip of width W. The sym-
bols correspond to different values of m =1 (0), 2 (O), 3 (0 ), 4 (A), 5 ('7), 8 (0), and 15 (e ). (a) X vs 1/W. (b) k vs 1/m'~ W; the
solid line corresponds to the scaling behavior A(u) —u' with a= —, [Eq. (2)]. (c) lnp vs lnW. (d) lnp/W vs ln(1/m'~ W); the solid
line corresponds to the scaling behavior %(u) —u~ and P =1 [Eq. (3)]. (e) lnr, „vs lnp; the solid line corresponds to the power-law
behavior r,. „—p" with y= —

—,
' . (f) ln(Mr/W ~ ) vs ln(1/m ~ W) [Eq. (4)].
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size scaling behavior

p = Wa(I/m '"W), (3)
where the scaling function R(u) has the properties
R(u) = I/2x for u»u, (isotropic growth) and %(u) —u

for u«u, (anisotropic growth). For large effective an-
isotropy (m W»1/u, ), this implies that p —m i, in-

dependently of W. At large values of m, the cutoff value
induced by the grid mesh size is reached and the aggre-
gates, like dendrites, are compact at the tip. This mor-
phological evolution manifests itself in the transverse
profile by a systematic increase of r „towards 1 due to
the anisotropy-induced stabilization of the tip of the ag-
gregate against tip splitting. Although there is a priori
no surface tension in the problem, the noise-reducing pa-
rameter m for DLA clusters grown on a square lat-
tice' '' (p —m i ) can thus be seen as playing a role
analogous to surface-tension anisotropy in viscous finger-
ing and crystal growth (p —E i, where e character-
izes the presence of fourfold anisotropy).

The next step in our demonstration is to show that the
geometrical properties of these Laplacian fractal pat-
terns are in turn amenable to a finite-size scaling
description. From the translational invariance of the oc-
cupancy probability distribution along the growth axis,
one deduces readily that the mass has a one-dimensional
component in the Ox direction, M(x) —x, i.e., the longi-
tudinal partial dimension Dz =1. Obviously, the fractal-
ity of the patterns has to come from the direction per-
pendicular to the growth axis. The computation of the
area of the transverse occupancy profile (Fig. 2) as a
function of the width of the strip gives the transverse
partial dimension MT(W) —W . From the definition
[Eq. (1)] of the region of large occupancy, the area of
the transverse profile is equal to the area of a step-
function profile of width A. W and height r „, „, i.e.,
MT(W) =r,. „) W. The data presented in Fig. 3(e) pro-
vide evidence for a general scaling relationship betweenr,. „and p: r,, =f(p) —p

'i . Isotropic (m =I) DLA
clusters:' From the observation that X=

& or equiva-
lently p=W/2x, one deduces that r,,„—W 'i which
yields MT —W . Combining DT =

3 and Dz = 1, one
gets a fractal dimension DF = —,

' which matches perfectly
the mean-field prediction' DF =(d +1)/(d+1) for
diffusion-limited aggregation in dimension d=2. Aniso-
tropic (m & 1) noise reduced DLA-clusters: Along the
line of our finite-size scaling analysis, one can reasonably
propose the scaling ansatz

MT(m W) =W JR(1/m W) (4)
where the scaling function At(u) behaves as At(u)—const for u»u, and At(u) —u for u«u, . Equation
(4) accounts for a crossover from DT = —,

' (isotropic
growth, DF = —', ) to DT = —,

' —
r$ (dendritic growth,

DF = —, —6) when increasing the effective anisotropy pa-
5

rameter m 3i W. The data collapse predicted by Eq. (4)
is numerically tested in Fig. 3(f). Although the ex-
istence of the scaling function Af(u) is clear,ly revealed,
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the numerical results gathered in Fig. 3(f) do not provide
an asymptotic estimate of the exponent 6; this would re-
quire the analysis of patterns with large m and W values
far beyond our computational potential.

Fortunately, there is an analytical alternative which
relies on the observation that r,„=f(p) no longer de-
pends on W as soon as p does not depend on W [Figs.
3(c) and 3(e)]. From the scaling relation (3) and the re-
sults in Fig. 3(d), this happens for Y=W/2'~ Y„
where Y, =3. Let us remark that Y= 1 corresponds to
isotropic growth, while the limit Y-m 8' +~ cor-
responds to the dendritic limit at large effective anisotro-
py. The fractal properties of noise-reduced DLA clusters
are thus contained in the Y dependence of k via
MT(Y) —X(Y)Y-Y '. Since DI =1, one gets X(Y)DT

D (Y) —2—Y ' . But X(Y) is known from the expression of
the radius of curvature at the tip of the analytical ST
solutions: X(Y) = —1/4Y+ (2/V+1/4Y ) ' '/2. This
leads to the following differential equation for DF(Y):

dD, (Y) D, (V)+
dY Yln Y

1+ 4Y
1+8Y—(1+8Y) ' '

(5)
A straightforward integration yields the following ana-
lytical expression for DF(Y) (Y& Y, ):
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FIG. 4. Box-counting measurements of the fractal dimen-
sion D~ of noise-reduced DLA clusters grown in a strip of
width 8'=512 with values of m ranging from m =1 to m =15:
inactive region (e), active region (O). The solid line corre-
sponds to the analytical prediction (6) with DF(Y, =3) =1.64.

DF(Y)=1+ [DF(Y,) —1]ln Y,+lnInY, ' (1+8Y)' —
1

(6)
where the constant of integration DF(Y, ) is a free pa-
rameter. In Fig. 4, we compare Eq. (6) with direct box-
counting measurements of the fractal dimension of
noise-reduced DLA clusters (m=1-15) grown in a strip
of width W=512. With an adequate choice of DF(Y, ),
the analytical expression (6) provides a very good fit of
the experimental box-counting dimensions. Let us re-
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mark, however, that for Y~ Y„ the box-counting di-
mension in the active region (DF = 1.57 +' 0.02) is
significantly smaller than in the inactive region as al-
ready noticed in previous works. ' Considering the limit
Y +~ in Eq. (6) leads to the following asymptotic
value for the fractal dimension of dendritic fractals:
DF(Y) = —', +O(1/ln Y). The very slow logarithmic con-
vergence to DF =

2 makes this limit quite inaccessible in

numerical experiments; this may explain the difhculties
encountered in previous studies to approach this asymp-
totic prediction. Finally let us mention that from the
relation DF= 2

=
3

—6, one predicts the value 6= 6

for the power-law exponent of the scaling function Af(u)
in Eq. (4) for u «u, .

In conclusion, the shape of the mean transverse
profiles of fractal patterns grown in a strip depends on an
efIective anisotropy. This is in direct correspondence
with a crossover known for stable smooth fingers. ' A
finite-size scaling analysis of these mean profiles thus
provides a picture for the anisotropy-induced morpholog-
ical transition of fractal patterns grown in Laplacian
fields. It predicts the fractal dimension's dependence on
the effective anisotropy (which results from both the an-
isotropy and the channel width). From this analysis, we
obtain the two limiting values DF =

3 for isotropic DLA
clusters and DF =

2 for anisotropic dendritic fractals.
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