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Heat Capacity of Untwinned YBazCu307 —b Crystals along the H, z Line
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We report heat-capacity measurements on untwinned YBa2Cu307 —~ single crystals in magnetic fields
H ~ 7 T, for both Hllc and H&c. Adding Gaussian fluctuations to a BCS-like step, we obtain a fit for
H =0, T = T, that is consistent with a 3D, two-component order parameter in the strong-coupling limit.
However, the H&0 data are inconsistent with this approach. A finite-size-scaling analysis, assuming
critical behavior and an H-dependent length, satisfactorily describes the data.

PACS numbers: 74.30.Ek, 05.70.Jk, 74.40.+k, 74.70.Vy

Fluctuation eAects are extremel~ difticult to observe in

conventional superconductors, ' but play predominant
roles in the new high-temperature materials because of
the extremely short low-temperature coherence length
go. We previously presented evidence of fluctuation
contributions to the heat capacity of YBa2Cu307 ~ near
T„and treated them in the Gaussian approximation. In
this Letter, we report new data on largely untwinned
single-crystal samples and consider the eAect of external
fields. The improved data, in zero field, still exhibit the
temperature dependence expected from Gaussian fIuc-
tuations, but do not support our earlier conclusion that
the number of order-parameter components must be
larger than 2. However, the magnetic-field response is
inconsistent with the Gaussian approximation, even
when higher-order corrections are included. In this
Letter, we start with the observation that magnetic fields
constrain the coherence length perpendicular to the ap-
plied field, and treat that constraint within the formalism
of finite-size scaling (FSS).

Millimeter-sized single crystals of YBa2Cu307 —g were
grown at the University of Illinois using the Cuo-rich
technique described elsewhere. Heat-capacity data
from two samples (each with m =40 pg) are reported
below. Sample YC187 contains a single untwinned
domain accounting for approximately one-half of the to-
tal mass; the rest of the sample shows widely spaced
twinning planes. Sample YC267 is approximately 85%
single domain. Susceptibility measurements show both
samples to display sharp transitions and low-temperature
zero-field-cooled values near —1/4tt. Heat-capacity
measurements were performed using a standard ac
method described in detail elsewhere. ' For measure-
ments in field, a fine quartz fiber was varnished to one
side of the sample to prevent rotation. Because the fiber
was located more than a thermal diAusion length from
the thermocouple, it did not change the observed heat-
capacity signal.

Results for sample YC187 are plotted as C~/T vs T in

Fig. 1. Although the phonon heat capacity displays neg-
ative curvature in this temperature range, the data show
positive curvature above and below T„attributable to
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FIG. 1. Ct, /T data and fitting function (solid line) for sam-
ple YC187, assuming a= —,

' and n=2. The dashed line is the
result of an extrapolation of the mean-field step to account for
the entropy of the fluctuations. The dot-dashed line indicates
the background necessary to fit the data by a logarithmic
divergence.

Auctuations. Data on sample YC267 in magnetic fields
up to 7 T applied both parallel and perpendicular to the
c axis are shown similarly in Fig. 2.

Fluctuation contributions to C~ can be treated as a
correction to mean-field theory (MFT) if ~It ~—:~T/T,—1

~
&& to, the reduced Ginzburg temperature. Esti-

mates'" of t~T, vary widely, from 0. 1 to 10 K. For
this reason, we fitted the zero-field data both by MFT
plus Gaussian terms and by a critical (logarithmic)
divergence. In the BCS theory, the MFT heat capacity
below T, is written ' BCMF =ay, trT, (1+bt ), with
a =1.43 and b =1.92 in the weak-coupling limit. Gauss-
ian fluctuations contribute ' a singular term Cz =Cfl—
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The fluctuation entropy arises because the observed T,
is reduced from the value T, "which would obtain in the
absence of fluctuations; we find T, "=95.9 K by an
equal-entropy construction. We use the extrapolated
step BCMF(T, ")=6.6 mJ/g K that describes the under-

lying MFT curve to find 3.5 & b & 5.0, within the range
expected for strong-coupling superconductors. ' The un-

certainty in b reflects that in the curvature of the lattice
term.

In a magnetic field, electrons in the lowest-order Lan-
dau orbit are the first to undergo a transition at T, (H).
This limits the coherence length perpendicular to the ap-
plied field (g ) to the Landau radius ao=(Po/2rrH)'t,
where po is the fiux quantum. As Lee and Shenoy
pointed out, the field thereby reduces the eA ective
dimensionality from d =3 to d = 1, and leads to a
broadening of the transition. Thouless and others have
extended this 1D analysis to obtain curves of constant
height that can be superposed by locating T, (H) and the
point of maximum upward curvature and scaling the
temperature axis by a width parameter hT(H) (where
n =2 is assumed):

FIG. 2. C~(H, T)/T for sample YC267, with H applied

parallel to the c axis and parallel to the a-b plane. The width

factor 5h, T that would approximately scale the 7-T data to the

universal curve of Ref. 6 is indicated.
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', where a =(4 —d)/2, and d is the dimensionality
of the system. In 3D, for a Ginzburg-Landau theory
with O(n) symmetry, Co+ is related to the geometric
average of the coherence length go =(g, mb), ) 't through

Co+ =nkvd/16trgo . (1)

Here n is the number of real, independent componets of
the Ginzburg-Landau (GL) order parameter which is re-
lated' to the Gaussian amplitude ratio by n=2 Cq+/

Cq . A value of n=2 from this equation is not sufficient

to establish s-wave pairing. '
To obtain sufficient precision, we approximate the lat-

tice plus normal electronic contribution to C~ as a
second-order polynomial, whose curvature near T, is es-

timated by interpolating between values well above and

below T, . There are significant covariances among the
adjustable parameters; the uncertainty in n, for example,
derives primarily from that in T, (90.9 K & T, & 91.2 K
for sample YC187). A systematic exploration of the g
surface (fitting the data within T, ~ 10 K and excluding
points very near T, ) leads to the best fit shown in Fig. 1;
with Cq+ =0.14 mJ/gK, a= —,', and n=2, this leads to
the value go=8. 5 A. The BCS step ACME(T, ) is 5. 1

mJ/gK. If we force a= I (2D behavior), the resulting
standard deviation is 50% higher and gives go= 25 A,
substantially larger than other estimates. A fit by a log-
arithmic divergence gives o.—30% higher, and by n =6,
50% higher than the n =2, o; = 2 best fit.

The shift T, (0) —T, (H) is proportional to H, and the
point of maximum downward curvature occurs approxi-
mately 5AT below T, (H). Our data (Fig. 2) indicate
that T, (H) thus defined is barely shifted in field, certain-
ly by less than 1 K, while 5h, T=7 K, both in a 7-T field
parallel to the c axis. Taking T, (0) —T, (H) & 1 K im-

plies Cq+/BCMF(T, ) & 0.18, whereas we find 0.0027
from our zero-field MFT analysis. It is interesting to
note that tG may be expressed t~ =2[Co+/ACME(T, )] .
The data thus imply that t~T, & 5.5 K, indicating that
the 1D mean-field approach is not self-consistent. We
must consider, then, critical-point eff'ects.

If the coherence length of a system undergoing a
phase transition is limited by the finite size I. of the sys-
tem, its heat capacity can be related' to the critical
divergence of the infinite system by the substitution

t —t * = [(t +8t. ) '+ (&L ) 'i '", (3)

~here Bz and h, z parametrize the size-dependent shift
and broadening, and it is assumed that there is no phase
transition in the finite system. Scaling arguments sug-

gest that 6t. ee (go/L) and AL ee (go/L)', where X=&
= I/v. The length that plays the role of L here is clear-
ly ao(H), so that

~H —~H —[2~(4o ) 'Hleo~ '"'. (4)

Dasgupta and Halperin' exploited FSS to analyze the
Monte Carlo simulation of a lattice superconductor of
size 1. . A key result is the observation that the heat-
capacity maximum hC (L) grows logarithmically with

233



VOLUME 66, NUMBER 2 PHYSICAL REVIEW LETTERS 14 JANUARY 1991

system size L. We parallel this approach by writing

~C(T,H) = in[(r+~ )'+(~ )']
2

D &+~0+—erfc
~0

(5)

hC (H) dC(T,—H) = —ln
1+(y —yp)'

1+ (yp) '

+—[erfc( —yo) —erfc(y —yo) ],D

(6)

with

dc-(H) = —A in(A ) —
2

in[1+(yo)']

+—erfc( —yo) .
D
2

We test this scaling hypothesis in Fig. 3 by plotting

The complementary error function permits a broadened
step in addition to the logarithmic singularity. Because
of the step, this function has a maximum at t
—yohH, where yo depends on the ratio D/A. In terms
of the variable y =(t —t )/hH, Eq. (5) may be written
as

and 6[ =

dH is plotted versus H ~ (v= —,
' ) in Fig. 4(b). The in-

tercept and slopes indicate Lo= 30(o, go= 1.5 A, and
= 7 A. There could certainly be numerical factors in

the definition of h, ] that change the absolute values.
Note that v= 3 is consistent with a logarithmic heat-
capacity singularity (a =0).

Based on the similarities of the data in fields to calcu-
lations for superconducting particles, de Jongh attrib-
uted the size limit to dislocations in the Aux-line lattice.

the data of Fig. 2 in the form AC (H) h—C(T,H) vs
y=[T —T (H)]/T, AH. The parameters AC, T, and
h, ~ are chosen for each data set to collapse all data to a
single curve. To be consistent, we subtract the back-
ground heat capacity determined from fitting a logarith-
mic divergence to the zero-field data, although the mag-
nitude of this cancels in the scaling procedure. The solid
line is a plot of Eq. (6) for A =1.3 mJ/gK and D =4.2
m J/g K, for which yo =1.14.

Figure 4(a) shows the logarithmic relationship be-
tween hC„, (H) and the AH used to scale the data in Fig.
3. Because the zero-field data are also rounded, we as-
sume the zero-field broadening is due to an inhomogenei-
ty length scale Lp that adds in quadrature to the field-
dependent width; i.e., hH =hp+h, ~, where

2jv
( ~)p ~/+

go H . (7)
Lp p
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FIG. 3. Scaled heat-capacity data of sample YC267. The
data are plotted as the diAerence between the electronic heat
capacity and the maximum AC, (H) vs scaled temperature.
The solid line represents the fit of the data by Eq. (6).
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FIG. 4. (a) Suppression of the heat-capacity maximum
ACnr (H) logarithmically with increasing transition width AH.
(b) Broadening of the transition with increasing field H
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We suggest here that the more fundamental constraint
on g, induced by the field, is by itself capable of pro-
ducing finite-size eAects. Recently, Wohlleben et ai.
have fitted polycrystalline data on YBa2Cu307 —z by a
logarithmic divergence with similar amplitudes to those
found here. Even if the zero-field data are in the cross-
over regime, the critical region is expanded by an applied
field, making the finite-size scaling analysis the more
appropriate approach. Further, unlike the mean-field re-
sult, it satisfactorily fits all the data presented here.
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Materials Research Laboratory by NSF Grant No.
DMR 89-20538 and by NSF Grant No. DMR 87-
14555.
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