
VOLUME 66, NUMBER 18 PHYSICAL REVIEW LETTERS 6 MAY 1991

Small-Amplitude Periodic and Chaotic Solutions of the Complex Ginzburg-Landau Equation
for a Subcritical Bifurcation
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We present numerically obtained bounded solutions of the one-dimensional complex Ginzburg-Landau
equation with a destabilizing cubic term and no stabilizing higher-order contributions. The boundedness
results from competition between dispersion and nonlinear frequency renormalization. We find chaotic
and also stationary and time-periodic states with spatial structure corresponding to a periodic array of
pulses. An analytical description is presented. Possibly experimental results connected with the disper-
sive chaos found in binary Auid mixtures can be explained.

PACS numbers: 47.20.Ky, 03.40.6c, 47.25.—c

In the last years the complex Ginzburg-Landau equa-
tion

8,A = [(1+ic~)6,„+1—(a+ic2) ~A ~
]A

+ (higher-order terms) (1)

has become very popular. ' It describes the small and
slowly varying amplitude and phase of a mode that bi-
furcates via an oscillatory instability from a homogene-
ous basic state. Equation (1) represents the simplest
version for quasi-one-dimensional systems without re-
flecting boundaries with irrelevant parameters trans-
formed away. This equation is most useful for supercrit-
ical bifurcations where one may set a =1. Then it exhib-
its plane-wave solutions within a stable wave-number
range if 1+c ~ c2 & 0 and turbulent solutions if 1+c ~ c2(0. ' Stable quasiperiodic solutions (wave trains) are
also found in a rather restricted parameter range near
the onset of turbulence. Actually, supercritical Hopf
bifurcations do not appear to be easily accessible. In
chemical systems, like the Belousov-Zhabotinski reac-
tion, one is apparently never near the bifurcation. The
well-known Rayleigh-Benard instability in binary fluid
mixtures is an example, but for the usual liquids the su-
percritical case occurs in a tiny range of slightly negative
separation ratios. A promising system is electrocon-
vection in nematics, but a recent experiment has re-
vealed a weakly subcritical bifurcation even there. The
most detailed experiments have up to now been per-
formed with the (secondary) oscillatory instability in
Rayleigh-Benard convection of low-Prandtl-number
fluids. '

For subcritical bifurcations, where one may choose
a= —1, Eq. (1) is usually of less use. Nevertheless, the
Ginzburg-Landau equation with complex coefticients was
first applied to plane shear-flow instabilities where in fact
the bifurcation is strongly subcritical. ' At first sight one
expects blowup of the solutions which can only be avoid-
ed by adding at least a fifth-order stabilizing term. The
investigation of pulses, fronts, and wave trains for that
equation has been an especially active field since the

discovery of stable pulses by Thual and Fauve. '' The
strong interest comes mainly from the experimental ob-
servation of similar types of states in binary-fluid convec-
tion in the subcritical range. There is, however, evi-
dence that bounded turbulent solutions of Eq. (1) should
exist with a = —1 without higher-order terms, although
this has to our knowledge not actually been shown. The
evidence comes from work by Bretherton and Spiegel'
for the case a =0, and from general mathematical argu-
ments put forward especially by Newell. ' Also, experi-
mental observations of chaotic and pulselike behavior in
binary-fluid convection slightly above threshold were
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FIG. 1. Classification of the long-time behavior of solutions
of Eq. (1) for a= —l in the c~-c2 plane. The system length is
L =2'/0. 3 with periodic boundary conditions. The circles cor-
respond to bounded and the crosses to unbounded solutions.
The line c2= —4cl separates the two ranges on the left. Along
the horizontal line at c2 =20 we found stable stationary pulses
(with wavelength X =L =2n/2. 8). The curve near c~ =0 refers
to a water-alcohol mixture with varying separation ratio +. At
the indicated positions one has a, + = —7.5 x 10 '; b,—3.5 x 10;c, —0.005; and d, —0.5.
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presented recently. ' '
We have investigated numerically Eq. (1) with

a = —
1 (without higher-order terms) looking for bound-

ed solutions. Since Eq. (1) is invariant under a simul-
taneous sign change of c] and c2, we chose c2~ 0. The
results are shown in Fig. 1. Let us first concentrate on
the crosses and circles. The crosses refer to situations
where the solutions blow up in finite time (typically after
t =8), starting from white noise. The circles give the
values for c~ and c2 where the solution stays bounded at
least until t =60 (and then for all times —our longest
simulation went up to r =800). Most of these solutions
show spatiotemporal chaos with a qualitative difference
for cl (0 and ci )0, analogous to the case a =0 (Figs.
3 and 4 in Ref. 12).

However, in some part of the range of bounded solu-
tions the system settles down in arrays of (quasi)sta-
tionary and (quasi)periodic pulses. In Fig. 2 we show
R = ~A ~

as a function of space and time for c 1
= —4 and

c2 =20. In Fig. 2(a) we initially had seven peaks and the
solution looks very regular and stays nearly stationary
for a long time period except for a very slow drift. Fig-
ure 2(b) shows the time evolution for the same parame-
ters where different initial conditions lead to eight peaks,
which are not arranged very regularly. They also remain
stationary for a long time (until t =90) and again be-
tween t = 150 and = 200 after some intermittent behav-
ior. Starting from white noise we observed qualitatively
the same behavior, but it takes much longer until a
(quasi)stationary situation has evolved. Although we did
not get exact periodic and stationary solutions numeri-
cally in this fairly long system, these results motivated us

to look for an analytic description.
For this purpose it seems useful to start from the limit

cl, c2 ~ where Eq. (1) degenerates into the nonlinear
Schrodinger equation. This integrable system is well
known to have a continuum of soliton solutions which
collapses to a discrete set when it is perturbed. ' One
may show this by using solitonic perturbation theory, '

but we will employ an elementary method. Our treat-
ment is slightly more general then the usual ones since
we wish to consider the case of spatially periodic solu-
tions rather than only solitary ones which correspond to
the limit of infinitely long period.

Setting a = —1 in Eq. (1), and writing

A(x, r) =R(x, r)e'et"') (2)

—e[I+(I —P)R']R' (3b)

(the primes denote spatial derivatives). Here we have
introduced c2 = —Pc ~ and e = I/c ~. Now an expansion in

cof the form

R =Ro+ c R2+2

8=e '(8 —1+e'81+. . . )

one obtains two real equations which, after suitable lin-
ear combination and division through c], can be written
as

e'a, R+eRa, 8=[(I+e')(a,'. —8')
+e +(P+c )R ]R,

—
—,
' e t), R 2+ e2R 8,8= (1 + e ) r) (R 6')

(b)
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For P, y) 0, Eq. (5a) allows spatially periodic solutions
T ~ ~/2

2y(r)
[2 m(r)]p—Ro(x, r) =

' 1/2

x m(t)y(r)
2 m(r)— (6)

becomes meaningful for sufficiently large values of ci
[P=0(1)]. This first leads to the orders e and e
where we have Ro8'-1=0 and |)„(Ro8' 1) =0, respec-
tively. Excluding RO=O, we obtain 6' —

~
=0, so that

8-~ only depends on t. Setting y(t):= |1,8-& one gets
for the next orders

o=a,'„R,—yR, +PRo' (e'),
—e„(Ro'8',) = —,

' e,Ro' —(1+y)R,' —(1 —P)R,' (e') .

I IG. 2. Space-time plots of the amplitude R for a= —1,
c|= —4, and c2 =20. The system length is L =2m/0. 3 with

periodic boundary conditions. We started with the periodic
function A =Rocos(kx). (a) Ra=1.6, k =2.1. (h) R0=0.8,
k =1.8.

Here dn(u ~m) is a Jacobian elliptic function that varies
between (1 —m)'~ and 1 with period 2E(m) [the pa-
rameter m is between 0 and 1, and K(m) is the complete
elliptic integral of the first kind]. ' For m 1 the
period of dn goes to infinity and (6) degenerates into the
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pulse (2y/P)'~ sech(y'~ x), while for m 0 one has
small, harmonic oscillations. We expect that the wave-

length

kind. ' Because E(m) & 0, the solution with y=yo, i.e.,
a frequency e 'yo in Eq. (2), is amplitude stable for
D & 0, and otherwise unstable. We have introduced

' 1/2

~ —2K( ( ))
y(t)

y0=3p (p —4) —2(p —1)
2 —m E(m)

(8)

D a, y =2E(m) y(1 —y/yo) . (7)

Here E(m) is the complete elliptic integral of the second

of Ro(x, t) is time independent and can be chosen out of
a suitable range. This then fixes m(t) once y(t) is
known.

To determine y and some stability properties of (6),
we insert Ro into Eq. (Sb) and demand that e'& also be
periodic with X,. Clearly this means that the expression
on the right-hand side of Eq. (5b), integrated over one
wavelength, is zero. This condition eventually leads to
an equation for y(t),

which is positive for
—

1

p & pd(m):= 1+3 1 —2
2 —m E(m)

and diverges at Pd(m). Thus Pd =4 at m =1 and larger
otherwise. At Pd not only the frequency diverges but
also the amplitude blows up and, keeping m fixed, the
length scale (and thereby the wavelength X) contracts to
zero. Choosing an arbitrary but fixed positive value of A.

the solution exists for P & 4 and degenerates into an ar-
ray of 8 peaks for P 4. In Fig. 1 the line P =4 (i.e.,
e2= —4e~), which clearly limits the range of bounded
solutions, is included. For D we get

I~

D =E(m)+ m E( )
K(m)

E (m)/(1 —m) K(m) —2/(2 —m ) (2 —m) m 2m

E(m)'
2m (1 —m) K(m)

which is positive for all m. Actually, for the solitary lim-
it m l our solutions are included in the formulas
presented in earlier work. ' There, however, attention
was focused on the stabilizing higher-order terms in Eq.
(1) and on the subthreshold regime e & 0.

To test the validity of the given expansion, we made
numerical simulations of Eq. (1), where A, and c2 were
held fixed varying c~. The results were compared with
the analytical expressions. In Fig. 3 the maximum and
the minimum of the stationary solution (6) are plotted as
a function of P= —c2/ci for A. =L =2m/2. 8 (solid lines).
The triangles correspond to simulations for cq =100 and
the circles to c2 =20. As expected the analytical results
are better for larger c2 (then we also have larger ci and
smaller e), but are fairly good over a wide range of cz.
For values of P larger than Ph, with Pq =7.1 for c2 =20
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FIG. 3. Minimum R;, and maximum R,„ofstable, sta-
tionary pulses as a function of P= —c2/c~ for L =X=2~l2.8.
The sohd hne ts calculated from Eq. (6). The circles refer to
numcncal simulations ~ith @2=20 and the triangles to ep
-100.

and Pl, =7.8 for c2 =100 (termination of symbols in Fig.
3), the pulses became unstable against oscillations. The
horizontal line at cq=20 in Fig. 1 corresponds to the
range of stable, stationary pulses. For larger P the long-
time behavior in these short systems either becomes sim-

ply periodic or more complex. Within the stationary
range there appears to exist a stable wave-number band.

The curve in Fig. 1 (near c~ =0) exhibits the c~-c2 re-
lation that should be accessible experimentally in water-
alcohol mixtures with varying separation ratio + accord-
ing to calculations with realistic boundary conditions.
Possibly the pulses observed in such mixtures slightly
above threshold in a rectangular channel' with
= —0.08 and in an annular channel' with + = —0.069
are explained by the stationary solutions presented here.
Quantitative discrepancies may be due to the higher-
order terms left out in Eq. (1). The pulses observed
below threshold (a & 0) are, on the other hand, presum-
ably described better by solutions where fifth-order terms
become more important. "' Also the dispersive chaos
found experimentally for values of + closer to zero' is
consistent with the behavior we found in the longer sys-
tems in the range where the stationary solutions are un-
stable.

Our investigation has revealed the existence of surpris-
ingly simple (locally) stable stationary solutions of the
complex Ginzburg-Landau equation for a subcritical bi-
furcation. An interesting open problem is the analytical
characterization of the upper stability boundary Pq
which appears to correspond to a subcritical Hopf bifur-
cation. We hope that eventually it will also be possible
to describe phenomena such as the creation, annihilation,
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and collision of pulses as observed in experiments in

binary fluid mixtures. '
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