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The validity of time-dependent Hartree-Fock (TDHF) theory is explored for the multiphoton ioniza-
tion of atoms. The 3D electrostatic interaction is replaced by a 1D soft-core interaction which allows the
construction of an ¹lectron atom in only tV dimensions. For multiphoton ionization of a two-electron
"He" atom in its ground state, we solve the time-dependent Schrodinger equation directly on a 2D lat-
tice and solve a 1D formulation of the TDHF equations. The 2D lattice solution compares favorably
with the frozen-core TDHF results, but not with the full nonlinear TDHF results.

PACS numbers: 32.80.Rm

Because of advances in high-intensity laser systems,
experiments can now be performed in which the strength
of the time-varying electromagnetic forces equals or sur-
passes the electron binding force of an atom. These
types of experiments' have stimulated the development
of various theoretical approaches ' to the approximate
solution of Schrodinger s equation for this essentially
nonperturbative regime of atomic physics. The direct
solution of the time-dependent Hartree-Fock (TDHF)
equations, which has been used for many years to study
heavy-ion collisions in nuclear physics, ' ' has been re-

cently applied to calculate multiphoton ionization rates
in rare-gas atoms. ' ' In this Letter the validity of
TDHF theory for the multiphoton ionization of closed-
shell atoms is explored within the context of a simple
model. By comparing an "exact" time-dependent solu-
tion of the model with the approximate TDHF results,
we find that caution must be exercised when using the
full nonlinear TDHF method to describe the multiphoton
ionization of an atom. Our conclusions are in keeping
with recent studies of multiphoton ionization of helium,

in which the full nonlinear TDHF method led to unphys-
ical and ambiguous ionization rates, ' and recent studies
of prompt nucleon emission from heavy-ion collisions, in
which frozen-core TDHF solutions are modified in a
perturbative manner to handle nucleon correlation
efrects.

Many of the qualitative features of atoms in intense
fields (such as above-threshold ionization, harmonic gen-
eration of light, and stabilization against ionization)
have been successfully modeled ' using a 1D soft-
core potential of the form V(x) = —(1+x ) 't . The
bound eigenfunctions alternate parity and their eigenen-
ergies follow Rydberg scaling. The idea may be extend-
ed to model an ¹ lectron atom in N dimensions by re-
placing the 3D electrostatic interaction by a 1D soft-core
interaction,

1 1

(c,+x +x,'+2c, fx;fl x, f)'" '

where c~ and c, are arbitrary coefficients and atomic
units are used. The Hamiltonian for the ¹lectron
"atom" may thus be written as

JV

Hatom =
i=1

Z 1

(c, +x )'";&,(c,+x +x,'+ac, ix;iix, i)'" '

where a nucleus of charge Z is located at x =0. The time-dependent Schrodinger equation is given by

i Btlt(x, t) H,.„—i&(x) +E (t ) sin (cot ) g x; tlt(x, t ),
t i=1

where W(x) is an absorbing potential at the boundary, and E(t) is the amplitude and co is the frequency of the elec-
tromagnetic field.

The time-dependent Schrodinger equation (3) may be solved directly for the ground state of a two-electron "He"
atom by application of the variational principle on a large 2D lattice. The resulting finite-diA'erence equations for grid
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points (x
~ „xqp) are given by

'

i By.p(r) = [T,+ Tp+ U,p i—8',p+ E(t) (x ~, +xqp) sin(rot )1 q~,p(t), (4)

where the kinetic-energy operators T and Tp are represented by three-point difference formulas and the atomic poten-
tial is given by (with Z =2)

z
U

2 ) 1/2

z +- 1

(c +x2p)' (c +x/, +xpp+2c, (x] ~~x2p~)'
(s)

For the ground state of a two-electron He atom, the single-determinant mean-field approximation to Eq. (3) results in a
1D time-dependent Hartree-Fock equation given by

i by. (r) = [T,+ V, —i W, +E(r)x, sin(cur) lp (t),
Bt

where the Hartree-Fock potential may be written as
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FIG. l. Logarithm of the probability density for the ground
state of "He" in a contour map. Upper plot is from a 2D lat-
tice calculation, while the lower plot is from a lD Hartree-
Fock (HF) calculation,
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and h, x is the grid spacing.
Both time-dependent equations (4) and (6) may be

propagated forward in either real or imaginary time us-

ing an implicit approximation to the time-evolution
operator. ' Choosing cp 2 to closely match the total
energy of the real helium atom, e, = —1 to maximize the
correlation energy, and setting W=E(r) =0, both time-
dependent equations (4) and (6) when propagated in

imaginary time relax initial Gaussian functions to the

ground state of the two-electron He atom. Contour
maps of log~p~ lp'(x ~, xq)1 in the particle coordinate plane
are found in Fig. 1 for both the 2D lattice and 1D HF
ground-state solutions. The Hartree-Fock energy is
found to be —77. 1 eV, while the 2D lattice energy is only
slightly lower at —77.3 eV. The Hartree-Fock energy
for the real helium atom is —77.9 eV, which represents
98.6% of the total energy. Although correlation effects
have a relatively small effect on the total energy, they do
produce a noticeable pinch along the x~,xq diagonals in

the 2D lattice solution. The amount of spatial symmetry
breaking may be controlled to some degree by varying
the correlation parameter c, between —

1 and +1.
Once the ground state of the two-electron He atom

was obtained, both time-dependent equations (4) and (6)
were propagated forward in real time. Our choice of a
field intensity of 1 X10' W/cm and a photon energy of
9.0 eV was stimulated by a previous TDHF calculation
for the three-photon ionization of helium. ' In Fig. 2
the time evolution of the total wave-function norm,
(y(x),xp, r) ly(x), x2, r)), and the ground-state probabili-
ty, ~(y(x~, xq, 0) ~y(x~, xq, t))~, are plotted for calcula-
tions using the 2D lattice, 1D frozen-core TDHF, and
full nonlinear TDHF formulations. In all cases the total
wave-function norm and ground-state probability de-
crease with time due to absorption on the boundary by
the W potential. Field oscillations are seen in the
ground-state probability. The 1D frozen-core TDHF
solution is found by the replacement p,'(r) p,'(0) in

Eq. (7) for the Hartree-Fock potential. Since there are
only two electrons present in the single shell of helium,
the frozen-core TDHF solution may be more accurately
described as a "single active electron" model. ' The
close agreement between the 2D lattice and frozen-core
TDHF methods is confirmation that the main ionization
mechanism is one electron moving away shielded from
the bare nucleus by the remaining electron. The spatial
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In conclusion, by comparing an exact time-dependent
solution of a 2D model of the helium atom with the ap-
proximate TDHF method, we find that caution must be
exercised when using the full nonlinear TDHF method to
describe multiphoton ionization. This has important im-
plications for future applications of the TDHF method to
study collective eAects in the multiphoton ionization of
rare-gas atoms. We further suggest that the procedure
of reducing 3D interactions to 1D interactions, coupled
with the growth in advanced computing capability,
makes possible the direct study of the dynamics of many
types of few-body problems.
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asymmetry induced by correlation thus has a dramatic
eff'ect on the ionization process. The 1D full nonlinear
TDHF solution preserves the spatial symmetry since the
potential is continually time updated by the wave func-
tion. This represents an ionization mechanism in which
both electrons move away simultaneously in the field of
an increasingly bare nucleus. From the exponential de-
cay of the total wave-function norm, an ionization rate of
6x10' Hz can be extracted for both the 2D lattice and
frozen-core TDHF methods. For the full nonlinear
TDHF method, however, the rate of ionization decreases
with time. Finally, we note that the comparison between
the frozen-core and full nonlinear TDHF results for He
are in qualitative agreement with the same comparison
made between previous TDHF calculations for the real
helium atom. ' Because of phase-space restrictions,
however, the frozen-core TDHF ionization rate in the
model He atom is an order of magnitude larger than its
counterpart in the TDHF calculation using the full 3D
electrostatic interaction. '
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FIG. 2. Time evolution of the wave-function norm (dashed

curve) and ground-state probability (solid curve) for "He."
The upper plot is from a 2D lattice calculation, the middle plot
is from a 1D frozen-core time-dependent Hartree-Fock calcu-
lation, while the lower plot is from a 1D full nonlinear time-
dependent Hartree-Fock calculation.
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