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We establish that in the functional-integral expression for the grand partition function, the thermo-
dynamic properties of a charged, rotating black hole are derived from a complex geometry. The corre-
sponding real “thermodynamical” action is constructed explicitly.
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Recently the proposal' to relate the Euclidean action
of static black holes to approximations of certain func-
tional integrals that can be interpreted as thermodynam-
ic partition functions has been developed extensively.?™
In this paper we extend these developments to the treat-
ment of the stationary geometries of charged, rotating
black holes. While there is no real Euclidean metric that
represents a rotating black hole, nevertheless, the hole
can be described by a complex geometry and its real ac-
tion, which we call the “thermodynamical action.”

Periodic imaginary time in Minkowski spacetime was
introduced® to enable the computation of canonical par-
tition functions by path-integral methods. Subsequent
developments apparently led to the belief that the ther-
modynamical action was always to be obtained from
real, positive-definite (Euclidean) metrics. (A complex
metric for rotating holes was considered in Ref. 1 but
was not employed in later work.”) Thus, a real Euclide-
an metric related to the vacuum rotating hole was
obtained by supplementing the analytic continuation
t— —it of the Boyer-Lindquist stationary time coordi-
nate ¢ by a further parameter transformation J— iJ,
where J is the real angular momentum.” However, the
resulting metric has little to do with the physical
(Lorentzian) Kerr black hole. In this paper we deal with
the metric of a charged rotating hole by a different
method that leads to a complex metric, and obtain its
corresponding real thermodynamical action. We address
the problem using the canonical formalism for the cou-
pled gravitational and electromagnetic fields. (The case

of the uncharged rotating black hole is treated in the La-
grangian formalism in Ref. 8.) Other fields, for example
the photons and gravitons resulting from one-loop
corrections, could be included in the analysis but are
omitted here.

The metric of a constant time slice X is denoted by 4;;,
the associated spatial covariant derivative operator by
D;, the corresponding momentum by P, the lapse func-
tion by N, and the shift vector by V. Thus, the space-
time metric has the form

ds?=—NZ%dt*+h;(dx'"+Vid)dx'+Vidt). (1)

The electromagnetic field is described by the one-form
A,dx*. The canonical field variables are the spatial
components A; of the vector potential and the conjugate
momentum &', which is — 1/4x times the electric-field
vector density. The component A of the vector poten-
tial is the Lagrange multiplier for the Gauss’s-law con-
straint,

g=—D;6'=0. 2)

The Einstein equations include the Hamiltonian con-
straint (G=h =kp=c=1)

=167 1pijp _ (piy2n]— Yh R
H = - [P pu (Pz) /21 o
27 pip  Nh o o
+\/h.8&+ ar 91;4;0'4/ =0, (3)
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and the momentum constraint
#;=—2D;P{+26/8;47=0. (4)

The evolution equations of motion are expressed through
the Poisson brackets by

9F/o:t ={F H} , (5)

where F represents any function of the dynamical vari-
ables h;;, PV, A;, or &', and H is the Hamiltonian. The
Hamiltonian has the form

H=[dx(NH+V'H,+ 469 + Hooundury . (6)

where the boundary terms Hpoundary are presented in de-
tail in Ref. 9, and are discussed below.

The line element (1) describes a Lorentzian geometry
whenever N, V', and hj; are real. If NV is imaginary, with
V' and h;; real, then the metric (1) is Euclidean. This
complexification or “Euclideanization” can be made ex-
plicit by replacing N with —iN in the metric and equa-
tions of motion, where NV is then taken to be real. How-
ever, this is not the complexification that is appropriate
for gravitational thermodynamics: The correct complex-
ification also includes changing the shift vector ¥’ and
the potential Ao from real to imaginary. We thus define
the following complexification map @ of the field vari-
ables:

O(N)=—IN, @)
(V) =—iv', (8)
D(A40) =—iAo, ®
®(F)=F, (10)

where N, V', Ao, and the dynamical variables F are real.
Observe that the Cauchy data (F) are invariant with
respect to the complexification ®, while the Lagrange
multipliers N, V', and Ay receive a complex phase. We
regard this as a key principle that will apply also to other
fields. '

The relevance of the complexification ® comes from
the observation that the Hamiltonian (6), including the
boundary terms presented below, is a sum of terms that
are linear in the Lagrange multipliers; it is therefore
mapped to

®(H)=—iH. an

For stationary histories of the system, the left-hand side
of the equations of motion (5) is zero. Therefore ®
preserves the constraints (2)-(4) and the dynamical
equations of motion (5) of stationary spacetimes.

Now suppose the gravitational and electromagnetic
fields are those of the Lorentzian Kerr-Newman solution,
described with respect to stationary Boyer-Lindquist
time slices £. Then ® maps this solution to a complex
history that satisfies the field equations and defines a
saddle point in an appropriate functional integral. Un-
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der the action of ®, the metric (1) becomes the complex
“Kerr-Newman metric”

®(ds?) =N2dt*+h;(dx'—iVidt)(dx/—iV/dt), (12)
while the electromagnetic field is described by
(A4, dx")=—iAodt +A;dx". (13)

Because the energy, angular momentum, and electric
charge are defined by two-surface integrals of the Cau-
chy data, they remain real with their physical values.
Furthermore, (12) has an ergosurface outside of the hor-
izon (or “bolt””) just as does the real Lorentzian black-
hole geometry. This feature cannot be incorporated into
a real positive-definite metric.

Consider the rotating axisymmetric black hole and its
surroundings contained in a cavity with axisymmetric
boundary two-surface B. We regard the interior of B as
the thermodynamic system and the exterior as the heat
bath. The heat bath that equilibrates the system has a
constant angular velocity'! * as measured with respect
to the “fixed stars” at spatial infinity. The zero-angu-
lar-momentum observers (ZAMO’s),'? who are at rest
in the slices of constant stationary time, have an angular
velocity w¥amo Wwith respect to the fixed stars. Conse-
quently, the angular velocity of the heat bath with
respect to the ZAMO’s, using ZAMO proper time, is

d=N"'o=N""o* —wiimo). (14)

w?amo and hence & depend on position. 12

The shift vector, in its role as a Lagrange multiplier
for the gravitational momentum constraint, embodies the
ZAMO-measured ‘“‘chemical potential” @ associated
with the angular momentum of the system. It is given by

Vi=we' =(w* —w3amo)o’, (15)

and V=N ""Wi=@¢' is the proper ZAMO-measured
spatial velocity of the heat bath. With V' given by (15),
regularity of the complexified geometry (12) now fixes
the constant angular velocity of the heat bath to be that
of the horizon, wj. (This complex geometry is equiv-
alent to that of Ref. 1.) One can show that the world
lines of the elements of the bath follow the orbits of a
stationary Killing vector'? that is, in fact, the “corotat-
ing” Killing vector. '

The ZAMO’s have four-velocities u* which are the
unit normals of the time slices. In hydrodynamic terms,
they are “Eulerian” observers at rest in the time slices,
and watch the heat bath rotate past. Correspondingly,
the “Lagrangian” observers with four-velocities w* are
comoving with the heat bath. These observers are useful
in describing the heat bath locally, but not globally, be-
cause bath rotation implies w(,0,w,>0 and there is no
global time slicing with respect to which the Lagrangian
observers are at rest. We therefore must adopt the Eu-
lerian viewpoint for a global description of dynamical
and thermodynamical states and use ZAMO-measured
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variables. °
The inverse Hawking temperature at infinity for a sta-
tionary black hole is given by Be =27k ~!, where

x=[(D'N)Y(D;N)1'?|, (16)

is the constant surface gravity of the horizon. Thus, the
proper inverse temperature determined by a ZAMO is

B=Nfw. 17)

[The proper inverse temperature determined by a La-
grangian observer at the same event is B/y, where y
=—g(u,w)l

We will construct the thermodynamical action for a
grand canonical ensemble, in which the inverse tempera-
ture and chemical potentials are specified on the topolog-
ically two-spherical boundary B in the stationary time
slice . This means that the two-geometry, the tangen-
tial components of A;, and the Lagrange multipliers 7V,
Vi and Ay are all fixed on B. The boundary terms in the
Hamiltonian that reflect these conditions are

2 iy 1
HB=§Bd2x\/;l—\/h:n,-Vij+§;N(k —k%

(18)
N

where o is the determinant of the metric induced on B,
and n' is a “radially” outward-pointing unit normal
defined on X. Also, k is the trace of the extrinsic curva-
ture of B as embedded in Z, and k° is a constant chosen
to ensure that the action for flat spacetime is zero.
These boundary terms can be derived® by observing that,
from a Lagrangian point of view,® the grand canonical
boundary conditions correspond to fixing the three-
geometry of 2B and the projection of A, onto 3B, where
3B is the history of the boundary B. (The intersection of
3B with I is the two-surface B.) The total action in that
case includes a boundary term that is proportional to the
integral over 3B of the trace of the extrinsic curvature of
3B. Introducing a foliation by spacelike slices and per-

+—1—A0n,-6”] ,

" =5ﬁBd2x\/Eﬂ(k —k°)/8n—§ﬁd2x\/5ﬁn"p,.zv/8,dv
- §dzx\/Eﬂ[a‘:znm,-P"f/\/i+<2:ni6f/\/i+@(A,-¢")n,-<s“'/\/i{] |8 .

In the first of the surface integrals at H, the normal #; is
proportional to the gradient D;/N of the lapse function.
Then using expression (16) for the surface gravity shows
that this term is — Ay/4, minus the black-hole entropy,
where Ay is the area of the event horizon. The remain-
ing integrals at H all vanish: Those involving B& are
zero because wiamo— wj as B— H;'* those involving
B¢ are then zero as required by regularity -of the elec-
tromagnetic field for the complexified Kerr-Newman
geometry.

The thermodynamical content of the boundary in-

forming a 3+1 split, one finds that this action has the
standard canonical form with a Hamiltonian that in-
cludes the surface terms (18).

The Hamiltonian (6) also includes boundary integrals
over H, which is the intersection of the outer event hor-
izon with T for the Lorentzian black hole (1) and the
bolt for the complexified geometry (12). The metric in-
duced on H is not to be fixed, but rather its ‘“momen-

tum” associated with a radial foliation.* The corre-
sponding boundary terms are equal to °
2 iiv 1
HH = _ﬁHdZX\/g ﬁn,’VjPU'f‘ En DIN
+—L agmei| 19)
vh

The full Hamiltonian is given by Egs. (6), (18), and
(19) where Hboundary =HB+HH.

The action has canonical form with Hamiltonian (6).
For stationary histories, the “pg” terms vanish, and upon
application of ® the action becomes purely imaginary.
The thermodynamical action I* is obtained from the
identification of phases exp(—1I*)=exp(il) in the func-
tional integral and is real. I* includes a periodic
identification of the Boyer-Lindquist time slices X, with
period B. This action is further simplified by eliminat-
ing the constraints (2)-(4). This procedure® places the
action in the form of a variational principle, whose extre-
ma relate the given boundary data to those constants or
functions that remain as degrees of freedom to be varied
after the constraints have been eliminated.® The result-
ing action I* is given by S times the sum of the right-
hand sides of Eqs. (18) and (19).

Now recall the definitions (14) and (17) of the proper
local inverse temperature and angular velocity, and fur-
ther define the proper electrostatic potential determined

by a ZAMO to be
p=—Aut=—N""do+dA;0' . (20)

The action then has the explicit form

1)

tegrals at B can be recognized as follows. The quasilocal
mass-energy of a stationary gravitating system is given
by the two-surface integral (Ref. 5, footnote 14)

1
E=—8;§ﬁgd2x\/5(k -k, (22)

while the total angular momentum is defined by an
Arnowitt-Deser-Misner surface integral '®

=-— 458 d*x~o2n;¢; P/, (23)
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and the total electric charge is given by Gauss’s law

0=~ gﬁB d*x~on;6'/\h . (24)

From these expressions for E, J, and Q one obtains the
proper differential surface fluxes dE/dA, dJ/dA, and
dQ/dA. The thermodynamical action is now

dE | dJ d
I*=—1—AH+£d2x\/c H—(ﬁw) E“LA“’E%
~\ dQ
+(ﬁ<p)dA (25)

Consider a choice for the two-surface B. In general, it is
not possible that the grand canonical boundary data B,
Bd, and B¢ are all constant on B. This can be seen from
an examination of the Kerr-Newman metric. We could
choose B so that one of these thermodynamical variables
is constant, and then the corresponding term in /* is a
product of constant surface data. For example, if B is an
isothermal surface B =const, then the energy term in I*
becomes BE|g. If B is an equipotential surface B@
=const, then the corresponding term is (8%)|zQ. If B is
a constant-B& surface, then the corresponding terms in
I* are —(Bd)|zJ, where T=$d*x/o(dJ/dA+A,dQ/
dA). [Note that Q and J are independent of B by virtue
of the Gauss’s-law constraint (2) and the momentum
constraint (4).] The key point is that for any choice of
the boundary surface B, only surface data remain in I*;
this is a consequence of formulating thermodynamics in
the context of a generally covariant theory. *

The term in expression (25) for the thermodynamical
action involving the canonical angular momentum J
gives the “thermodynamic Massieu potential”* associat-
ed with the injection of matter into the system. For a
sufficiently large boundary surface B, wZamo is negligi-
ble and w = w};. The term involving & gives the poten-
tial for the injection of charge. The expression involving
the magnetic three-vector potential A4, gives the potential
associated with changing the electromotive force around
the hole.!” A detailed discussion of the various thermo-
dynamic potentials will be given elsewhere.

We conclude that all of standard black-hole thermo-
dynamics can be obtained as a stationary-phase approxi-
mation to functional-integral representations of partition
functions.>~>
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