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Comment on "Topological Glass Transition in

Entangled Flux State"
In a recent Letter, Obukhov and Rubinstein' predict

extremely slow relaxation of a thermally entangled flux-
line lattice in high-T, superconductors. The relaxation
times for thermally assisted disentangling are found to
be very large, ~exp[exp[(A/d) ]I for single Aux lines
and ccexp[(A/d) 1 for collective motion of many flux
lines, where d=(po/8)' is the flux-line spacing and
A = (2@kBTL/e3) ' the Auctuation amplitude of the
ends of a Aux line of length L (slab width) and effective
line tension e3 in a "flux liquid. " This very stable (even
in the absence of pinning) entangled glass or liquid state
is a consequence of topological constraints imposed on
the wandering flux lines and depends crucially on the as-
sumption of a relatively large energy barrier for crossing
or cutting of flux lines, for which the authors' adopt
Nelson's estimate

U, „i= 2IH~~&p =lpn lnv/2trpnk = 50k' T, (1)

for @OH, ~
= 80 6 (at T=77 K in Bi-Sr-Ca-Cu-0) and

"cutting length" 1=10 A (interlayer spacing, Aux lines

perpendicular to the Cu-0 layers).
We would like to note that the cutting energy of vor-

tices may actually be much lower, such that thermally
activated vortex cutting may become an eAective mode
of disentanglement. In particular, the factor lnK in (1)
comes from the magnetic-field energy at large distances
& A, , which is not involved in cutting. Note also that in

isotropic London superconductors (with coherence length
0) the magnetic interaction between vortices van-

ishes if these run perpendicular to each other, as is the
case in all crossing points in the figures of Ref. 1. Such
vortices do not see other and thus cross easily.

The estimate (1) is based on the magnetic interaction
of vortices which are straight and parallel over a length
of several penetration depths X. Though this scalar two-
dimensional (2D) vortex interaction a:Ko(r2/k) (r2 is

the vortex distance, Ko is the McDonald function diverg-

ing for r2 0), used in Ref. 2 and in several following

papers, does not diverge when formally applied to cutting
of nonparallel vortices, the correct 3D London interac-
tion between curved vortices is quite different, namely,
vectorial and nonlocal along the flux lines: '

& exp( —r3/X)

8-p "' :
where r3=~r; —

r~~ is the 3D distance between vortex
line elements dr; (i is the vortex index). This 3D in-
teraction becomes even softer when the finite vortex core
and the material anisotropy are accounted for and when
the flux density 8 increases. Furthermore, as also
mentioned in Ref. 1, in layered superconductors cutting
of Aux lines (chains of point vortices in difl'erent layers)
becomes easy when the coupling between layers is weak.

For a pair of stiff straight vortices tilted by an angle a
with respect to each other the interaction can be calcu-

lated analytically from (2)

U(a, a) = (po cota/2pnk)exp( —a/l) (3)
(a is the shortest vortex distance). A more realistic cut-
ting energy may be calculated from (2) numerically by
choosing appropriate boundary conditions and allowing
the vortices to curve spatially in order to minimize their
total energy before they intersect: This enhances the
cutting angle a and reduces the cutting energy due to a
trade-off' between increasing self-energy and decreasing
mutual interaction of the vortices. A first such compu-
tation was performed by Wagenleithner, who (for his
boundary conditions) found the vortex-pair configuration
to be unstable when a & 2X. We find similar instabilities
of entangled vortices in a flux-line lattice and in aniso-
tropic superconductors. We thus suggest that the statist-
ical mechanics of the vortex lattice should employ the
correct 3D interaction (2) between vortices in order to
avoid results which possibly do not apply to real vortex
lattices.

A further remark to Ref. 1 is that in real supercon-
ductors each flux line is pinned by many pins, e.g. , by ox-
ygen vacancies. It is thus little relevant whether the vor-
tex lattice is entangled or has internal viscosity since it
would not flow between pins even if it were "liquid ' in

the absence of pins. And even if there were only a few
strong pins, these would exert a very ~eak total pinning
force since only the (small) vortex cores are pinned, and
large linear or planar pins cannot pin curved flux lines
sufficiently. Finally, an ideally stifl' vortex lattice could
not be pinned at all by random pins since all pinning
forces cancel when the lattice cannot adjust to the pins;
by the same token, internal viscosity will reduce the pin-
ning of the vortex lattice.

One of us (E.H.B.) acknowledges support by the Ger-
man Bundesministerium fur Forschung und Technologie.

E. H. Brandt and A. Sudbg
ATA, T Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

Received 19 November 1990
PACS numbers: 74.60.Ec, 74.40.+k, 74.60.6e

'S. P. Obukhov and M. Rubinstein, Phys. Rev. Lett. 65,
1279 (1990).

2D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); D. R. Nel-
son and H. S. Seung, Phys. Rev. B 39, 9153 (1989).

3E. H. Brandt, Phys. Rev. B 34, 6514 (1986).
4E. H. Brandt, Physica (Amsterdam) 1654166B (Vol. II),

1129 (1990), and Vol. III (to be published).
5A. Houghton, R. A. Pelcovits, and A. Sudbp, Phys. Rev. B

40, 6763 (1989).
M. V. Feigel'man, V. B. Geshkenbein, and A. I. Larkin,

Physica (Amsterdam) 167C, 177 (1990).
E. H. Brandt, J. R. Clem, and D. G. %almsley, J. Low

Temp. Phys. 37, 43 (1979).
sE. H. Brandt, Int. J. Mod. Phys. (to be published).
9P. Wagenleithner, J. Low Temp. Phys. 48, 25 (1982).

2278 1991 The American Physical Society


