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The spin-hole coherent-state path integral is used to generate a systematic large-spin expansion of the
t-J model on the square lattice. The single hole’s classical energy is minimized by small polarons with
short-ranged interactions. Intersublattice hopping of polarons is forbidden by a tunneling selection rule.
We derive the low-energy Lagrangian which reduces to the model of Wiegmann, Wen, Shankar, and

Lee of Néel-gauge-field-induced superconductivity.
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The discovery of high-temperature superconductivity
has spurred intense investigations of the two-dimensional
doped antiferromagnet. In the strong-coupling limit, the
t-J Hamiltonian, derived from the large-U Hubbard
model,' is often used to describe the low-lying excita-
tions. At zero doping, it directly reduces to the quantum
antiferromagnetic Heisenberg model (QHM). Substan-
tial progress has been recently achieved in understanding
the Heisenberg limit, both theoretically and experimen-
tally.? The effects of doping, however, are still highly
controversial.

Continuum theories® and the Schwinger-boson-slave-
fermion mean-field theory* predict spiral magnetic
phases at finite doping concentrations. Recently, howev-
er, the RPA determinant has been found to be unstable
(negative) in a range of momenta.®> The offending fluc-
tuations were identified as local enhancements of the
spiral distortion. Clearly, the holes drive strong pertur-
bations of the spins on the lattice-constant scale. These
are difficult to treat by direct application of continuum
and mean-field approximations on the Hubbard and ¢-J
models.

The path integral of spin coherent states has been
fruitfully used by Haldane to map the QHM onto the
nonlinear o model and to derive the topological Berry
phases.® It provided a unified semiclassical treatment of
the ordered and disordered phases of the quantum anti-
ferromagnet. In this Letter we generalize this path in-
tegral to represent the ¢-J model by defining “spin-hole
coherent states.” This allows us to treat the short-range
interactions carefully, while observing the local con-
straints. We derive a semiclassical expansion of the
ground state and low excitations in the presence of holes.
Although the expansion is formally controlled by the
large spin size S we have learned that (at least for the
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undoped case?) it can work well even for S= §.
The ¢-J Hamiltonian is given by>
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where A5 =(a b} —bl'a}) and Fj=(afa;+bb). G
((i;jk)) denote summation over sites i and their first
(second) nearest neighbors on the square lattice. J
=4¢%/U is the Heisenberg superexchange constant. ¢
and U are the hopping and interaction parameters of the
parent Hubbard model. Equation (1) includes all the
terms to second order in ¢/U. The operators a;,b; (f;)
are Schwinger bosons (slave fermions), and the Hilbert
space is subjected to the constraint a'a+b'b+f1f =25
at each site. This constraint generalizes the original
Hubbard S = 3 states to arbitrary spin S.
The spin-hole coherent states are defined as follows:
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[05(6,0))=02S") ~"2(uat+0vb%)25(0,0) are the stan-
dard spin coherent states, where u =cos(6/2)e ~**2 and
v=sin(6/2)e™?. ¢ is a Grassman variable. The states
(2) allow a resolution of the identity in the S sector:
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where the factor as=(25+1)/2S is required for nor-
malizing the matrix elements to unity. In the grand
canonical partition function, as is replaced by unity by
renormalizing the chemical potential u.

Following standard procedure® we use (3) to construct
the path integral for the partition function:

)]

H" in (4) is given by Eq. (1) where a,b,f— u,v,E. A- Q; is the spin-kinetic term, where A(Q) is the vector potential
of a unit magnetic monopole at the origin @ =0. The fermion “time derivatives” denote the discrete form
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E=[£(7) —&(r—€)1/e, where € is the time step.

H*" has quadratic and quartic fermion terms. We decouple the four-fermion terms by the Hartree-Fock approxima-
tion. For our purposes this approximation is justified by the following arguments: (i) Hole-correlation corrections are
of higher order in hole density, and (ii) the quartic terms vanish in the ferromagnetically correlated regions, where the
hole density is high. We define p;;[f0]1 =(f;'f;) to be determined self-consistently, and write H” =~ H’+ H —pu X, £¥¢;
where
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Here we define the classical parameters J=4JS? and 7=2tS. The sums in H represent two distinct hopping processes:
intersublattice hopping (““f terms”) and intrasublattice hopping (“J terms”). y;; and yj are the phases of u*u;+v*v;
and (u*v} —v*u})(urv; —viu;), respectively. When the spins €; have short-range antiferromagnetic order the y
phases in the ¢ terms fluctuate wildly, while y;x =7;A"- (x; —x;) represents a slowly varying Néel gauge field AV (x)
whose curl is the topological density of the staggered magnetization.” n;=+1 (—1) on sublattice 4 (B) is the corre-
sponding “‘sublattice charge.” Weigmann, Wen, Shankar, and Lee have studied Lagrangians which contain similar in-
trasublattice A™V-coupled hopping terms in the context of high-T, superconductivity.® Returning to the z-J model, we
see that the ¢ terms are not AV-gauge invariant, and do not conserve the sublattice charges. Although the ¢ terms can-
not be justifiably ignored, especially in the 7/J > 1 regime, we shall soon see how they are effectively eliminated from

the low-energy Lagrangian.

We begin by integrating out the fermions to obtain a spin partition function

J:)ﬁdt

where E/[] is the time-retarded action (free energy) of
the Hamiltonian H’/. Here we concentrate on the zero-
temperature case B =o. Equation (6) is a useful start-
ing point for the semiclassical approximation. In the
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classical limit, S — oo, the spins are frozen, i.e., (@) =0.
The first step is to minimize H’+E/ for a given number
of holes. The second step includes the semiclassical fluc-
tuations whose dynamics are given by the kinetic terms.
We discuss the single-hole and the many-hole cases sepa-
rately.

The single hole.— In the regime 7/J > 0.87, the “pola-
ron,” which is a local alignment of spins, yields a lower
energy than any of the possible uniform states, including
the Néel state, spiral states, and canted states. This re-
sult helps to explain the instability in the RPA fluctua-
tions about the uniform states.>

We used a Lanzcos algorithm on the Connection
Machine to minimize the energy for 128%128 spins.
The polaron variational parameters were chosen to de-
scribe a ferromagnetic core, a transition region, and a
far-field antiferromagnetic tail. The latter is completely
determined by the boundary condition 86 and the pure
Heisenberg model (i.e., the Laplace equation).

Our results are quite simple. For 1 <7/J <4.1 the
single-hole energy is minimized by the five-site polaron
(one flipped spin), depicted in Fig. 1. The hole density is
approximately 5 and § on the central and neighboring
sites, respectively, with a small amount of leakage [due
to the J terms in (5)] to sites further away. For 4.1
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< 7/J < 6.6, the polaron has two flipped spins (diagonal-
ly across a plaquette), and at larger values the core ra-
dius increases slowly as R.~(7/J)'* and the energy
goes asymptotically as e, +47~ (J7)'/2. The most im-
portant fact is that the small polarons do not distort the
Neéel background. In particular, the configurations cen-
tered on a bond® are considerably higher in energy. We
also find that the polarons have no tails,? ie., 56=0,
throughout the regime discussed above. This follows
from competing contributions of order *J(66)2 of H’
and E’. Since, in addition, the density p is exponentially
localized near the polaron sites, we conclude that the
classical interactions between polarons are short ranged.
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FIG. 1. The five-site polaron. The hole density is primarily
concentrated on the sites of the unfilled arrows. The circular
arrows represent an allowed tunneling path, where the polaron
hops two lattice constants to the left. I' is the hopping rate
given by Eq. (7).
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The polaron breaks the lattice translational symmetry.
This symmetry is restored by tunneling events, where
two spins i and k simultaneously flip their orientation
(see Fig. 1). The tunneling matrix element I (the
polaron’s hopping rate) is nonperturbative in S ~':

l"ik =F0€Xp l_z.fdé’lgﬁ] =S '/zﬂikt_exp(—Saik) .
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Equation (7) can be computed as follows: The azimu-
thal coordinates are analytically continued i¢p — ¢;, while
their cannonical momenta S7=1(2S —p;)cosd; are kept
real. It can be readily verified that X,;S7 and H'+E/
are conserved along the tunneling path S7(¢) which min-
imizes the action. As a result of these conservation laws,
we obtain a selection rule: Tunneling can only take
place between sites on the same sublattice. This, in
effect, amounts to the elimination of the intersublattice ¢
terms.

ak,Bik are slowly varying dimensionless functions of 7
and J. For five-site polarons and S =4 we estimate the
exponent to be roughly unity, but a fuller treatment of
the multidimensional tunneling problem is required for a
quantitative determination of the polaron’s effective
mass.

The single polaron in a perfect Néel background occu-
pies a Bloch wave of dispersion

ex= 2T lcos(2k, ) +cos(2k,)]

+2T [cos(k, + k), ) +cos(ky —k, )1,

where ¢,b denote the site of the other flipped spin as la-
beled in Fig. 1. By energetic arguments, I'y, <T'.. Thus
the single-polaron energy is minimized at k =(x/2,7/2).
This result agrees with other studies of the single-hole
spectral function in the ¢-J model.!® For small devia-
tions of the background spins from antiferromagnetic or-
der the tunneling rate I';x is modulated by the overlap of
the background and the perfectly antiferromagnetic
configurations. This overlap is just explim; AN (x;
—xx)]. A" and n; are the aforementioned Néel gauge
field and sublattice charge, respectively. We notice that
A" couples in a gauge-invariant way to the polarons,
and that the sublattice charges are conserved in the hop-
ping.

Interactions.— The interactions between two polarons
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_ FIG. 2. Classical interactions between polarons, in units of
J. Lines a-d represent the second polaron positions as labeled
in Fig. 1. The solid line represents the relative condensation
energy per hole of the hole-rich phase (see text).

were computed in the regime 7/J=1-4. We define
Uﬁ='7efj—2eh, where ¢;; is the relaxed energy of a
two-hole polaron with flipped spins at sites i and j. U? is
repulsive, and of order 0.6J-2.6J. The intersite interac-
tions, for neighboring polarons at sites a-d (see Fig. 1),
are plotted in Fig. 2. We find both attractive and repul-
sive interactions, and it is interesting to note that for
/J < 1.8 there is a near-neighbor attraction of antifer-
romagnetically correlated spins. We also consider the
possibility of polaron condensation into hole-rich do-
mains.!! The condensation energy per hole is deter-
mined by minimizing it with respect to the spin con-
figuration, and the density. The spins in the hole-rich
domains align ferromagnetically, and the energy per hole
is given by erm = —47+4(BJix) /2. This result coincides
with that of Emery, Kivelson, and Lin,' except that
their quantum correction factor B =0.584 is here set to
7. In Fig. 2, the condensation energy Ae. =egm —ey is
plotted. We find that it becomes negative at 7/J=2.7,
above which phase separation will occur for large S.

Attractive interactions and negative condensation en-
ergies may result in charge-density waves or supercon-
ductivity in the ground state of the quantized model.
However, if realistic intersite Coulomb repulsions are
added to the ¢-J model, the attractive interactions may
change sign. In particular, phase separation will be sup-
pressed, or pushed to higher values of 7/J.

The information given above allows us to write the

| effective Lagrangian for a dilute system of small pola-

rons:

R . ~ A . .7 ~ ~ ANy
L7=3[i2S —p*p)A(Q,)- Q;+pF*p;1+ 2 {Z} 00+ (e —u)pi*pf+(Z,',(>Fike"'A “pl' o+ 2 ULp* pip}tp; -
i isj i isJ Y

(8)

Equation (8) is the main result of this paper. .L°7 describes a two-charge system of spinless fermions p; with short-
range interactions Uf; coupled to Heisenberg spins. The formation of polarons can be viewed as a strong short-
wavelength dressing of the original f holes by the spins. As a consequence, the uncomfortable ¢ terms have been con-
veniently eliminated, and the effect of holes on the spin background is short ranged. A major advantage of the model
(8) over Eq. (5) is that in the small concentration limit §<<1, (8) is amenable to the continuum approximation. Fol-

2264



VOLUME 66, NUMBER 17

PHYSICAL REVIEW LETTERS

29 APRIL 1991

lowing Haldane® the spin interactions can be relaced by the (2+ 1)-dimensional nonlinear o model, with 5-dependent
renormalized stiffness constant and spin-wave velocity. The precise evaluation of the o-model parameters for finite & is
beyond the scope of this paper, but we expect that above some critical density & > &, the ground state is disordered;'?
i.e., a “spin liquid.” In the massive spin-liquid phase, Eq. (8) reduces to Wiegmann, Wen, Shankar, and Lee’s model:®

LWWsL— ¥

n==1

where m is the effective mass at k=(x/2,7/2), and the
“electromagnetic” Néel fields are F,,=9,4) —98,4Y. «
is the inverse spin correlation length, which is also the
coupling constant of the gauge field. Previous analyses®
have concluded that the ground state of (9) is most likely
a resonating-valence-bond-type superconductor. Lee ar-
gued® that the pairing is caused by two effects: (i) at-
traction between the opposite charges induced by the
Néel gauge field, and (ii) suppression of coherent
single-particle propagation due to fluctuating Bohm-
Aharonov phases, while the pairs (p}pL) propagate as
free bosons. Both (i) and (ii) are only valid in the mag-
netically disordered phase, a pleasing feature which
agrees with the phase diagrams of the copper-oxide su-
perconductors.

Aside from the mechanism of superconductivity, the
small-polaron theory could be checked numerically by
finite-lattice Monte Carlo simulations, and experimental-
ly in the copper oxides and other doped antiferromag-
nets. For example, the polaron size can be estimated by
NMR techniques, 13 and its internal excitations could be
probed by optical absorption. In the frozen-moments re-
gime, one expects the polarons to exhibit conductivity
typical of weakly localized semiconductors. '*

The computations were performed in part on the Con-
nection Machine at Boston University. This work has
been supported by a Grant from the NSF, Grant No.
DMR-8914045. A.A. acknowledges the Alfred P. Sloan
Foundation for a fellowship.

Note added.—1In a recent paper, ° Dagotto and
Schrieffer have found that a quasiparticle state which
describes a five-site polaron of momentum k= (x/2,7/2)
has appreciable overlap with the exact ground state of
the single-hole ¢-J model on a 4x4 lattice. The agree-
ment with our semiclassical predictions validates the use
of the large-S approximation to this model.
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