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Phyllotaxis of Flux Lattices in Layered Superconductors
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The geometry of a flux lattice pinned by superconducting layers is studied. Under variation of mag-
netic field the lattice undergoes an infinite sequence of continuous transitions corresponding to different
ways of selection of shortest distances. All possible lattices form a hierarchical structure identified as the
hierarchy of Farey numbers. It is shown that dynamically accessible lattices are characterized by pairs

of consecutive Fibonacci numbers.
PACS numbers: 74.60.Ge, 74.70.Jm

The phenomenon of phyllotaxis is a morphological
property of many botanical objects: leaves of various
plants, seeds of a pinecone and of a sunflower, scales of a
pineapple, etc.'"? They are arranged in lattices formed
by spirals, left hand and right hand, whose numbers are
always found to be consecutive in the Fibonacci se-
quence. Recently an interesting mechanism of phyllo-
taxis was suggested: compression-induced evolution of
hard disks packed along logarithmic spirals.? In this
Letter we study a physical system lying far away from
botanics: an Abrikosov flux lattice in a layered super-
conductor. Surprisingly, it turns out that the dynamics
of the lattice under variation of magnetic field gives rise
to structures very similar to those known in botanics. In
particular, pairs of consecutive Fibonacci numbers ap-
pear. Besides opening a way to an alternative explana-
tion of botanical phyllotaxis,® this result suggests that
phyllotaxis is a general phenomenon that must occur in
all soft lattices subjected to strong deformation.

Let us describe precisely the situation we are interest-
ed in. We consider a layered superconductor having
zero-temperature correlation length &£y, comparable to the
interlayer spacing d. In this case at sufficiently low tem-
perature T < T, the layered structure provides strong
pinning of superconducting vortices.*> To simplify the
discussion we assume that both the magnetic field H and
the vortices are parallel to the superconducting layers.®
Our gedanken experiment will consist of two steps: (1)
lowering the temperature 7 while keeping H constant;
(2) then lowering the magnetic field H at T =const.

So, we start with 7> T, and H., < H < H,.», where
H. and H., are the zero-temperature critical fields.
First, when we lower the temperature, superconductivity
emerges at T =T.(H) and vortices appear. The optimal
vortex lattice appearing at T.(H) is triangular and sym-
metric, the families of its symmetry planes being parallel
and perpendicular to the planes of the layers.” Near
T.(H), pinning by the layers is weak because of thermal
fluctuations, but it becomes stronger as we keep going
down in temperature. For what will be done below it is
important to assume that the temperature 7 we have
reached is small enough to provide locking of the vortices
between the layers for the whole time of our experiment.
Now, when we start varying H in this low-temperature
state the vortices are free to move only in the planes

separating the layers and, because of this, a shear insta-
bility develops at some critical Ho.® Moreover, below Hy
the lattice undergoes an infinite sequence of transitions
generating Fibonacci numbers.

Let us specify the configurations of vortices we are
considering and write the Hamiltonian. Everywhere
below we study only vortices arranged in a periodic lat-
tice. Roughly speaking, our reason for this is the follow-
ing: The vortices interact repulsively at all distances and
a general belief exists (although not proven yet) that
only simple periodic structures are favored by repulsive
interactions.” Because of the symmetry mentioned above
the starting lattice consists of periodic arrays of vortices
aligned along the planes of the layers (indicated by hor-
izontal rows in the inset of Fig. 1), vortices in neighbor-
ing rows being shifted by a/2. Since the vortices can
move only along the planes, the class of lattices we have
to analyze is a two-parameter family: a >0, 0<a <1
(due to pinning b =const). It is worth remarking here
that the value of b is set by the starting magnetic field, so
the horizontal rows of vortices are likely to be separated
by many layers: b>>d. Whenever the configuration of
vortices is given its energy can be obtained from the
theory of superconductivity. Because of the condition
b>>d a simple expression derived from anisotropic Lon-
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FIG. 1. The function W, (a) for 0.5<a <1, x=0.015. The
peaks are marked by rational numbers corresponding to zeros
of sin(wan) in (2). Inset: Flux lattice. Planes of supercon-
ducting layers are indicated by dashed lines. Because of pin-
ning b is never changed. The starting (symmetric) lattice cor-
responds to a = ¥ .
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don equations'® can be used:
F=Z2 1+1*(uG +u;GH1 71, (1)
mn

Gy =2nn/a, G,=2x(m—an)/b,

where Z =®3/a’b?8x, L is London penetration depth,
and u,,u;3 are eigenvalues of the mass tensor.” The sum
(1) runs over the reciprocal lattice Gy =1(Gx,G)),
where m and n are integers. As a result of quantization
of flux we have a relation between the magnetic field H
and the area of the unit cell: ®y=abH. Therefore,
whenever H is chosen, a is fixed. Thus our task becomes
straightforward: For any given H (or a) study minima
of the energy F as function of a. This will be carried out
below in the two limiting cases: (i) a,b <A and (ii)
a,b>\. The first case is very easy to analyze numeri-
cally, while the second allows for analytic solution. The
results in the cases (i) and (ii) turn to be qualitatively
and even quantitatively similar.

In the first case the repulsion of the vortices is loga-
rithmic, i.e., one can neglect the 1 in the denominator of
(1) and, after summing over m, obtain

in?(zan) coth(nx)
Wa)=—2Z sHl
¢ lngo sinh2(nx ) +sin*(zan) nx

>

(2)
where x =ao/a, ao=nb(u\/u3)"?, and Z,=2Zb?/4u;.
After combining this with ®y=abH we get the relation
x =cH, where ¢ =aob/®,. So, x turns out to be the di-
mensionless magnetic field of the problem. Let us re-
mark that when (2) was obtained from (1) an irrelevant
constant was added to cancel a large but a-independent
part of F.

The function W, (a) has simple symmetry properties:
Wela) =W, (a+1)=W,(—a). Because of that we
study it only in the interval 0.5 <a < 1. Qualitatively,
the behavior of W,(a) can be understood in the follow-
ing way. The denominator sinh?(nx) +sin?(ran) of the
nth term of (2) produces a peak near every rational
amn=m/n provided n=<x ~!; otherwise, the peak is
smoothed out. So, for any given x <1 the plot W, (a)
exhibits peaks near all rationals a,,, with denominators
less than x ~! (see Fig. 1). Thus at small x the function
W, (a) has approximately x ~2 local maxima and about
the same number of local minima, since maxima and
minima alternate. An interesting feature of the minima
clearly seen in Fig. 1 is that they all have roughly equal
energy. Because of that we are forced to study all the
minima together.

The positions of all minima plotted as functions of x
give the picture shown in Fig. 2. The first thing to note
is that at high x there is a single minimum located at
a=0.5 corresponding to the stability of the symmetric
lattice. Then, when going down in x, a bifurcation
occurs at x =0.24 (the shear instability of the lattice
leads to symmetry breaking®). Another point is that at
small x many new minima appear, forming a complex

\ 0.25
_ 1\, X
2 02
\ 0.15 1
\ L
)3
/ 017
/
3 /
P { . 0.05
:’ 7§7 85/8
T, 1
,,m(g 3121 AN 1,
05 067 0.9 o
T

FIG. 2. Positions of local minima of the function W, (a) as
functions of x. Quasibifurcations are labeled by rational num-
bers corresponding to the peaks of W,(a). The trajectory of
the minimum starting at the bifurcation point a=7% passes
through quasibifurcations labeled by 3, *, %, &, &, frac-
tions composed of consecutive Fibonacci numbers. Its limit 7,
the golden mean, is marked. Inset: A quasibifurcation occur-
ring in asymmetric potential.

hierarchical structure. However, only two of them are
dynamically accessible from the bifurcation point. We
shall see below that as x— 0 the two accessible minima
tend to 7 and 1 — 7, where 1=(~/5—1)/2=0.618 is the
golden mean. It is worth mentioning that the geometry
of Fig. 2 is remarkably similar to the branching pattern
found by Koch and Rothen.?

To get a further understanding of Fig. 2 we observe
that although only one true bifurcation of minima
occurs, the whole pattern can be viewed as resulting
from *“quasibifurcations.” The mechanism of a quasibi-
furcation is shown in the inset of Fig. 2. Every quasibi-
furcation can be attributed to the appearance of a new
peak of the function W, (a). As we have seen, the peaks
can be labeled by rational numbers. Now we are able to
transport this labeling to Fig. 2. The rational labels put
on Fig. 2 help to reveal an interesting number-theoretic
structure underlying the pattern. It turns to be nothing
but the hierarchy of Farey numbers.

Farey numbers'' are just all rational numbers between
0 and 1 arranged in series #,, each consisting of 2” num-
bers (see Fig. 3). A simple rule allows one to compute
Fn+1 provided all previous series are known: Order the
numbers of the first n series, then put between every two
neighbors their “sum” according to the Farey rule p/q
@r/s=(p+r)/(qg+s). (To be able to apply this rule to
F, it is convenient to introduce F —, ={0/1,1/1} as shown
in Fig. 3.) This generation rule implies that every two
numbers of F, are separated by at least one number
from F,—;. In turn, this means that every number ap-
pears in Farey series as a sum of two numbers belonging
to different series. Thus every number has a “younger”
and an “‘older” parent. Let us connect every number
with its younger parent (as shown in Fig. 3). Remark-
ably, we can observe that the structure we get has the
same branching properties as the one in Fig. 2.
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FIG. 3. Farey numbers arranged in series #,. Each number
m/n is connected with its “parents” p/q and r/s in preceding
series (m=p+r, n=qg +s). Connections with younger (older)
parents are shown by solid (dashed) bonds.

Now we want to extrapolate the Farey law found
empirically in the computed part of the pattern (Fig. 2)
to all arbitrarily small x. An important consequence of
this extrapolation is that the trajectory of the dynamical-
ly accessible minimum (starting at @ =0.5) goes through
the sequence of quasibifurcation points labeled by the
fractions F,/F,+, where F, are Fibonacci numbers.
[Proof: (i) Fibonacci numbers satisfy F,+ =F,+F,—1;
(ii) every three subsequent numbers n,/m;, n)/my,
n3/ms on the continuous curves in Fig. 3 formed by solid
lines satisfy the Farey rule ny=n+n,, my=my+m,.]
We also immediately get that the limit of the dynamical-
ly accessible minimum is the golden mean since this is
the property of the ratios of Fibonacci numbers. Let us
also mention another interesting feature of Fig. 2 follow-
ing from this analysis: The set of limiting points of all
trajectories fills densely the interval [0.5,1] (because the
Farey numbers of the series #, become dense in [0,1] as
n— o),

Now let us switch to the case a,b >\ corresponding to
exponentially weak repulsion of the vortices. Certainly,
this situation is of less experimental interest than the one
of logarithmic repulsion discussed above: When the
repulsion is small the lattice becomes very sensitive to
any disorder and, to the author’s knowledge, is never ob-
served. However, this situation is worth studying here
since the analytic solution available in this case offers a
very clear picture of quasibifurcations, explaining their
physical meaning.

To simplify matters it is convenient to rescale,
x— xhul’? y— yaud? ie., to put A2y, =1, A%u3=1in
(1). The energy (1) can be equivalently represented as a
sum over the real lattice:

F=ZX U(tmn), Twmn=m+an)a,nb). 3)

In the limit a,b>A, ie., |rmn|>1, the potential
U(r)=fexplirk)(1+k?) ~'d*k becomes 2 ~'/2
xexp(—r). Now, the key observation is that with ex-
ponential accuracy one can keep only the shortest vectors
in the sum (3). However, a planar lattice can have only
one, two, or three shortest vectors, so the infinite sum (3)
is replaced by a sum of not more than three terms.
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Moreover, the lattices with only one shortest vector can-
not provide an energy minimum because of the following
simple reason. By a small change of a one can always
reach smaller F by making the shortest vector longer and
keeping other vectors longer than the shortest one. Con-
sequently, as candidates for minima one has to study
only lattices with two or three equal shortest vectors, i.e.,
lattices having rhombic unit cells, edges of the rhombi
being not longer than their diagonals. There is only one
exception from this rule: the starting symmetric lattice
having shortest vector ryo.

Now, let us take a pair of lattice vectors r,,,r,; and
study when they form a rhombic unit cell. The first
thing to notice is that the area of the unit cell has to be
ab. Thus, we have |mg —np|=1. Another constraint is
that |r,,,| =|r,,|. Simple algebra enables us to rewrite it
as

(a—a)la—ay)+x%2=0, a|,2=m—i£

ntg’ 4)

where now x =b/a [compare with (2)]. Equation (4)
defines a circle in the (a,x) plane. However, we also
have the constraint that the diagonals of the rhombus are
not shorter than its edges: |run £ 1pq| > |r,0]. If written
explicitly it defines an arc of the circle (4). But the con-
ditions mentioned are not yet sufficient to provide an en-
ergy minimum. It turns out® that one has to add the
condition (m+an)(p+aq) <0. The arcs selected by
this complete set of constraints are shown in Fig. 4.

Let us observe that many arcs have common ends,
thus forming continuous curves and reproducing the to-
pology of Figs. 2 and 3 as well as quasibifurcations.
Moreover, the system of arcs admits labeling. The gen-
erating numbers m/n, p/q can be placed near ends of
corresponding arcs so that labels of matching ends coin-
cide. As demonstrated in Fig. 4 the labeling we get is
exactly the Farey labeling introduced above.?

This result enables one to explain what happens when
we go down in x along one arc and then change to anoth-
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FIG. 4. Arcs of circles representing all rhombic lattices giv-
ing local minima of the energy (3) in the limit a,6>>A. After
the ends of the circles are marked as explained in the text,
Farey labeling is reproduced. Inset: Trajectory of the absolute
energy minimum in the (a,In(x)) plane.
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er arc. While moving along the arc with the ends labeled
by m/n and p/q, the shortest vectors of the lattice
remain r,, and rp,;. As x decreases the angle between
rmn and rp, gets larger and reaches 120° at the end of
the arc. At this point the lattice becomes triangular:
lrm,,+rpq| = || =|r,,q|. After passing to the next arc
the pair of shortest vectors changes: rpn,Ip;— Ipg,
Im+pn+q (n <q). The angle between the new shortest
vectors is 60°; it starts growing when x decreases further
and it finally reaches 120° at the next end of the arc.
Then the process is repeated. It should be noted that an
alternative basis change, Tpn,fpg— TmnsTm+pn+q (1
< g), leads to another arc which, however, is disconnect-
ed from the old arc. So, only one of two possible basis
types is dynamically accessible from the end of the arc.
The basis-replacement rule together with initial condi-
tions immediately generates Fibonacci numbers (see Fig.
4).

We also can view this from another side. For any lat-
tice one can choose two different bases: (i) Trn,Tpg, be-
ing shortest lattice vectors, and (ii) rjo,ro; defined by
(3). In terms of the matrix A transforming the first
basis to the second one our result reads

Fr— Fy
Fr Fy+

m p
n q

A= = , (5)

for all dynamically accessible lattices. Geometrically
this can be interpreted in the following way. Let us
recognize ro as the horizontal period of the lattice. Now
we connect every vortex with its four nearest neighbors
and get two grids corresponding to the basis (i). Then
we count how many times the horizontal period ry inter-
sects each of the grids. According to (5) the count will
give Fy and Fy +.

Let us briefly characterize effects of disorder and tem-
perature. Disorder becomes important at weak magnetic
field when the density of vortices and, therefore, elastic
moduli of the lattice are small. Thus large Fibonacci
numbers are not likely to be reached. On the other
hand, the effect of temperature is becoming unimportant
in this limit: The danger is only thermal fluctuations
destroying lattice topology through kink formation by
dislocations, but the energy of a kink grows when the
separation of vortices gets larger. However, thermal
fluctuations must be important at high A and especially
strong near the point of true bifurcation.® Another thing
to mention is that different regions of the lattice can
leave the point a=+ in different directions, creating
domains of two types. However, computation of the en-
ergy of a domain wall gives a positive value,>® so one can
hope that domains will be sufficiently large and thus ob-
servable.

Finally, let us mention that one can be interested also
in the absolute minimum of the energy as function of x.

This question becomes relevant when the experiment
lasts long enough to provide time for equilibration. The
result for the case of exponential repulsion is shown in
the inset of Fig. 4. The trace of the absolute minimum
jumps from one branch of the tree to another in a com-
plicated way leading to an infinite sequence of first-order
transitions. One can notice that the curve passes
through all common ends of pairs of arcs. The explana-
tion is straightforward: These points correspond to per-
fect triangular lattices which are known to provide the
absolute minimum of energy even without any constraint
imposed by layers.
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