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Auger Recombination within Landau Levels in a Two-Dimensional Electron Gas
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A strong emission arising from states lying higher in energy than those optically pumped is observed
under interband excitation into partially filled Landau levels of a modulation-doped GaAs quantum-well
structure in a magnetic field. The intensity of this emission depends quadratically on the excitation
power and is strongly influenced by magnetic field through the occupancy of the Landau levels. This
effect demonstrates the high efficiency of Auger processes in partially filled Landau levels of a two-

dimensional electron gas.

PACS numbers: 73.20.Dx, 78.20.Ls, 78.65.—s

A direct experimental proof of Auger recombination
would consist of an observation of the related up-energy
conversion. Such a process in which the energy released
by one electron, when relaxing to a lower-lying state, is
transferred to another electron, excited into a higher-
lying state, has been evidenced for discrete atomic orbit-
als' and also for band states of semiconductors®? but
usually in an indirect way. We have investigated an
atomiclike system which consists of the discrete equidis-
tant Landau levels of a quasi-two-dimensional electron
gas, as can be found in modulation-doped semiconductor
heterostructures with a magnetic field applied perpendic-
ular to the two-dimensional layers. In this case, particu-
lar states can be selectively optically excited and discrete
lines are observed in emission. Furthermore, the number
of electrons at each level can be tuned by the magnetic-
field strength. We show in this Letter that, with inter-
band optical excitation, an emission arising from states
lying higher than those pumped by the laser can be
detected. This emission is observed at low temperatures
(kT=0.15 meV) and for low excitation powers (Pxc
<10 Wem ~2) and can be as high as 9 meV above the
excitation energy. Strikingly enough, its intensity may
be comparable to that of the luminescence arising below
the excitation. This is in contrast with what has been re-
ported for bulk semiconductors* where the related inten-
sity has been found to be several orders of magnitude
lower than the intensity of the conventional lumines-
cence. The up-conversion of energy is attributed to
electron-electron scattering processes (shakeup of the
Fermi sea®) occurring within the quantized Landau lev-
els of the two-dimensional electron gas.

The results have been obtained on a one-side modula-
tion-doped n-type GaAs/GaAlAs single quantum well
with a well thickness of 250 A and an electron sheet con-
centration of n,=7.6x10'" ¢cm ~2. In this sample the
zero-electric subband is occupied and the Fermi level is
located very close to the bottom of the first subband.®

Representative magnetoluminescence and magnetolumi-
nescence-excitation spectra, for o* polarized light, are
shown in Fig. 1(a).” It is clear that one can easily assign
the peaks related to the two-dimensional structure and
separate them from the bulk luminescence. The Lan-
dau-level fan chart of the optically allowed transitions
observed in luminescence and luminescence-excitation
spectra is shown in Fig. 1(b). The Fermi-level position
as determined from the onset of the excitation spectra
[visualized with the dashed line in Fig. 1(b)] is in perfect
agreement with transport data. The jumps of the Fermi
level occurring at B =5.3, 7.95, and 15.9 T correspond to
full occupation of three, two, and one Landau levels, re-
spectively (filling factor including spin degeneracy v =6,
4, and 2, respectively). Since the cyclotron energy for
the valence band is relatively small, a single valence-
band level is assumed in this paper.

At fields of around 9.5 T the lowest Landau level Lg is
fully occupied, whereas the first Landau level L, is par-
tially empty. When we excite electrons into this L level,
a strong emission at energies higher than the laser ener-
gy is observed together with the normal luminescence
coming from Lo [Fig. 2(a)l. This higher-energy emis-
sion originates from the zero Landau level of the first
electric subband, Lj, which is the nearest empty elec-
tronic state of higher energy than L,. The excitation
spectrum of the luminescence related to L¢ [Fig. 2(a)l
shows not only the usual pseudoabsorption transitions
above the emission energy, but also a clear maximum
below the detected energy, when the excitation energy
coincides with L.

A schematic model explaining our experimental re-
sults is shown in Fig. 2(b). Electrons from valence-band
states are excited into the L; Landau level and thereby
empty states can be created in Lo when the Ly electrons
recombine with photoinduced holes. Two electrons on L
may interact, deexciting one to the lower Lg level, losing
hwo., and exciting the second to the higher empty level
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FIG. 1. (a) Intensity of the luminescence detected at A wdet, as a function of the exciting energy (left) and luminescence spectra at
different excitation energies A wexc (right). Two-dimensional and bulk structures are observed when the excitation energy corre-
sponds to the peak of the two-dimensional density of states (solid line), and mainly bulk-related luminescence is visible when exciting
in the gap between the two-dimensional levels (dashed line). (b) The Landau-level fan chart of the optically active transitions ob-
served in luminescence (crosses) and luminescence-excitation (open circles) spectra. The size of the symbol reflects the transition in-
tensity. The L¢, absorption line involves the light-hole level. The Fermi-level position is shown with the dashed line.

L,, gaining hw,, conserving energy in the process. Such
mechanisms are always possible but are usually not ex-
perimentally observable because the carriers excited to
L, by the Auger process will relax rapidly to the L, state
before recombining optically. However, in this particu-
lar system, the carriers excited to L, can be observed
since they can relax first to Ly and then recombine, giv-
ing rise to a luminescence at energies above the laser ex-
citation.

Recent experimental results®®-'% show that L, which
is associated with the first empty electric subband, has
an excitonic character even in doped samples. Therefore
electrons on the L level are strongly correlated with in-
dividual holes, leading to a remarkably efficient radiative
electron-hole recombination compared to the thermaliza-
tion of electrons towards states of lower energy. The
emission peak related to the L level is then always visi-
ble in “normal” (exciting at higher energies) lumines-
cence spectra, even if empty states exist at lower energies
[see Fig. 1(a)]. This allows us to use this excitonic
recombination as a “trap detector” of Auger electrons.

To study more in detail the above-laser emission we
have measured its intensity in the range of magnetic
fields between 7.95 and about 12 T (when the Fermi lev-
el is pinned to the L Landau level) and also in the range
between 5.3 and about 6.4 T (in this case the L, Landau
level is partially empty and lies below Lg and similar
processes like those described in Fig. 2 may occur involv-
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FIG. 2. (a) Luminescence spectra observed under excitation
into the partially occupied Landau level L| (A wex) below and
above the laser energy (left) and intensity of the above-laser
emission (A w4e) as a function of the exciting energy (right).
(b) Schematic picture of the recombination processes explain-
ing the above-laser emission. The relevant processes are shown
with solid lines, other relaxation-recombination channels with
dashed lines. n;,n/ (ny) denote the electron (hole) concentra-
tions on Landau levels L;,L/ (Ly). No=2eB/h is the degenera-
cy of the Landau level.
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ing now L,, L§, and the next empty Landau level L3).
The changes of I¢, the peak intensity of the above-laser
emission, with magnetic field are shown in Fig. 3(a)
(solid circles). In both cases (v<4 and vS6) a sharp
onset is observed at lower magnetic fields followed by a
saturation of the intensity at higher fields. The depen-
dence of Iy with excitation power P is quadratic on
P.. in the range of low excitation powers [Fig. 3(b)]
and linear on Py at high excitation powers. The depen-
dence of the intensity /o of the luminescence associated
with Lg is also shown in Fig. 3. In both cases (mag-
netic-field and power dependences) the variations of I
and [ are clearly different showing their different origin.
Quantitatively, it is easy to reproduce the dependence of
Iy on Py by solving the rate equations at a fixed mag-
netic field. This analysis gives the quadratic dependence
of ¢ as long as the radiative recombination rate from the
L level is small compared to the thermalization rate
down to the partially empty L, state, i.e., when the L¢-
related emission is not a dominant recombination chan-
nel. This is no longer true for the highest excitation
power when 7 shows a linear dependence. As a matter
of fact, the quadratic power dependence must saturate
because otherwise the energy-conservation law would be
violated.
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FIG. 3. Solid circles: variation of the peak intensity (/¢) of
the above-laser emission as a function of the magnetic-field-
dependent filling factor v or the separation A between the
excitation- and the emission-peak energies. The peak intensity
of the Lo-related luminescence (/o) is shown with open circles.
Solid lines are guides for the eye. (b) Power dependence (in
relative units) of the /¢ and /o when exciting into the L, level.
Solid lines represent quadratic (for 7§) and linear (for /o) vari-
ations.

To reproduce the magnetic-field dependence with the
same quantitative analysis is more difficult because one
should take into account the effects of nonparabolicity,
broadening of Landau levels, filling-factor-dependent
screening, etc., which is beyond the scope of this paper.
However, the onset is clearly related to the field where
empty states appear in the L level at v=4 (L, at v=6).
The saturation is explained by the magnetic-field-in-
duced decrease of the electron concentration n; on L,
(n; on L,, respectively) which leads to a decrease of the
Auger process efficiency.

Processes similar to those shown in Fig. 2(b) may
occur for all Landau levels with indexes n =1 but not
for n=0. However, we have also observed a recombina-
tion from Ly when exciting into Lo for B=15.9 T field
beyond which the Ly level becomes partially empty [see
Fig. 1(b)]. Since, in this case, the emission intensity is
at least 2 orders of magnitude lower than when Landau
levels with higher indices are excited, this effect must be
of a different origin. Indeed, under excitation of elec-
trons into the L, level, a new emission appears in the
gap, below the laser energy, at a distance approximately
equal to the separation between Lo and L levels. This
would indicate an impurity-assisted process, a virtual
Auger process, !! or resonant Raman scattering.

Using cyclotron absorption saturation and cyclotron
emission experiments in different bulk semiconduc-
tors,>!? it has been established that the Auger process
becomes an important mechanism in the recombination
between Landau levels. Although we deal here with a
very different situation, namely, having discrete Landau
levels which are already populated even at thermal equi-
librium and this population is only slightly changed un-
der optical excitation, we can also directly see from our
data the efficiency of the Auger recombination. In fact,
at high excitation power (in the linear regime of the I}
power dependence) the intensity 7§ of the above-laser
emission is given directly by the flux of promoted carriers
through Auger processes: I =np/rAuge,, where n, is the
quasistationary concentration of empty places on the L
level. The intensity /¢ of luminescence below the laser
energy is equal to the sum of the flux of electrons deex-
citing by Auger processes and the flux of electrons relax-
ing with emission of photons or phonons,13 ie., Io
=n,/(1/tauger +1/7pn). At B=9.5 T and at high excita-
tion power [see Fig. 2(a)] the ratio of integrated intensi-
ties Jo/Ip==3, and therefore at this field Tauger/Tph==2.
In general, the Auger flux is a complicated function of
magnetic field and excitation power and therefore it is
impossible to give a single quantity for the Auger rate;
instead, a full analysis of the field and power depen-
dences can be given. Such an analysis is in progress but
falls beyond the scope of this Letter. Under some simpli-
fying assumption we have estimated that 7auger~5
x10 "' s at Pexe=10 W/cm? and B=9.5 T i.e., when
the electron concentration on the partially filled L, level
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is n,=3%10'" cm ~2 and photocreated hole concentra-
tion is ~10!" cm ~2. This time value would correspond
to the electronic Auger lifetime obtained from cyclotron
resonance experimentsI2 for bulk GaAs at n,=5x10"*
cm 3.

An enhancement of the Auger recombination rate in
two-dimensional systems may be expected due to the
effect of reduced screening-enhanced correlation ef-
fects.>!* Our observations are in agreement with recent
experimental studies'® which show that electron-electron
interactions yield the relevant contribution to carrier
thermalization in GaAs modulation-doped quantum
wells.

In summary, it has been shown that the observation of
an emission arising from states lying higher than those
optically excited can be understood in terms of Auger-
type processes occurring within the electronic Landau
levels of two-dimensional semiconductor structures:. We
believe that our observation, together with proper the-
oretical calculations, could lead to a deeper understand-
ing of electron-electron interaction in two-dimensional
semiconductor systems.
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