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High-Resolution X-Ray-DiH'raction Spectra of Thue-Morse GaAs-AlAs Heterostructures:
Towards a Novel Description of Disorder
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We present the first analysis of high-resolution x-ray-diff'raction spectra of finite-size Thue-Morse
GaAs-A1As superlattice heterostructures, which show essential properties of singular continuous mea-
sures. The implications for future investigations of disordered systems are considered.
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Starting, for example, with 0 one obtains, by successive
application of this rule, after n =4 iterations a sequence
of length 2"=16: 0110100110010110and so on. It is
well known that the Thue-Morse sequence has a singular
continuous Fourier transform' ' ' and this fact, as we
shall see below, focuses interest for the first time on a
purely measure-theoretic property and its possible physi-
cal role in the properties of the high-resolution x-ray-
diffraction spectra of Thue-Morse superlattice hetero-
structures.

A "measure" describes how a certain quantity is "at-
tributed" to a set —the most usual illustration resorts
to the mass. After the famous decomposition theorem
due to Lebesgue, any measure p can be decomposed in a
unique fashion into three primitive types of measures,

P =PAT+ gsc+PAc, (2)

the so-called atomic (AT), singular continuous (SC),

The experimental discovery of quasicrystals' in 1984
has opened a new field of research to both experimental-
ists and theoreticians. In this field, the importance of
deterministic structures having controlled aperiodic dis-
order is being increasingly recognized. This is why one-
dimensional deterministic sequences generated by sub-
stitutions or finite automata are now widely used
mathematical objects to build such structures. In partic-
ular, 3D multilayer heterostructures having two kinds of
layers arranged according to the Fibonacci sequence
were first defined and eAectively made as early as 1985
by molecular-beam epitaxy (MBE) and consequently
investigated by x-ray and neutron diffraction, Raman
scattering, ' ' ' etc.

Prompted by all of these studies, an extension of such
methods to nonquasiperiodic systems soon began (for a
review, see for example, Ref. 12), with special interest in

the Thue-Morse sequence, ' ' and its mathematical and

physical properties. ' For instance, in 1987 a Thue-
Morse superlattice heterostructure was made for the first
time and investigated by Raman scattering. '

Let us recall that the Thue-Morse sequence which can
be generated using a two-automation ' ' can also be
defined on a two-letter alphabet [0, I j using the following
substitution rule o.:

and absolutely continuous (AC) measures. One can
say that to the measure p of a set, or of an interval, is
associated in a unique fashion an increasing right con-
tinuous function p which is some sort of primitive of p:

p(]a, b]) =v p(b) —
v p(a) .

An example of atomic measure is Dirac's measure,
also called by physicists the "Dirac delta function. "
Then, with a mass at the point x =a, the function p is a
step function [p(x) =0 if x & a; p(x) =1 if x & a]. It is

not continuous. The Fourier transform of the Fibonacci
sequence has an atomic measure with a countable num-

ber of peaks.
Lebesgue's measure is absolutely continuous, and the

associated p function is continuous and diff'erentiable.
[p(x) =x]. The Fourier transform of a random se-

quence as well as of the Rudin-Shapiro sequence has an
absolutely continuous measure.

It is a singular continuous measure which is associat-
ed with the function p called a "devil's staircase" (pre-
viously known as "Lebesgue's singular function"). w is
continuous, and the measure has no point masses, but it
is carried by a Cantor set. Both absolutely and singular
continuous measures have long been called "diff'use mea-
sures. "

A deterministic sequence being given, we shall be in-

terested in the decomposition according to Lebesgue's
theorem of the measure associated with its Fourier trans-
form and, in a physical realization of this sequence, with

the possible evolution, depending on physical parameters,
of each of its three primitive components, AT, AC, and
SC. We shall now turn to the specific case of the high-
resolution x-ray study of a Thue-Morse multilayer het-
erostructure.

The Thue-Morse superlattice heterostructures, having
2" layers, were grown on a GaAs(001) substrate by
molecular-beam epitxy (MBE). The deposition rate was
about 1 A/sec. The lattice simply consisted of A1As (A)
and GaAs (8) layers. The thicknesses of alternating
layers, dz and dz, were determined by the intensity os-
cillation of the specularly rejected electron beam. The
values of dz and dz were finally designed to be dz
=dg =Sao, where ao is the average constant of the cubic
"zinc-blende" lattice of AlAs and GaAs.

The measurement of the x-ray-difI'raction pattern was
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FIG. 1. X-ray-diAraction pattern of a GaAs-AlAs Thue-
Morse superlattice heterostructure with 2'0 layers (see text).

made using a triple-axis spectrometer with Cu Ka~ radi-
ation (50 kV, 250 mA) monochromatized by (002)
refiection from a pyrolytic graphite crystal. A divergent
slit of 0.15 and receiving slit of 0.10 were employed as
an x-ray optical system. The detailed procedure of the
measurement is nearly the same as that of the measure-
ment in the Fibonacci lattices and has been described
elsewhere. ' '

The observed diff'raction pattern is given in Fig. 1 for
n =10, where E is the magnitude of the scattering vector
4zcsin8/A, . One observes numerous peaks superimposed
on the fundamental (002) and (004) reflections referred
to the average structure of GaAs and A1As. In order to
investigate the spectra in more detail, a high-resolution
measurement was carried out using a GaAs (002) mono-
chromator and a Si (111)analyzer.

The high-resolution diff'raction patterns just above the
scattering angle (28) of the GaAs (004) reflection are
given in Figs. 2(a) and 2(b), for n = 10 and 7, respective-
ly, where we take as the unit of q, qo =2m/Sao, where qo
is the wave number associated with the thickness of al-
ternating layers dz =dz =Sao. The resolution is so high
that the (004) reflections of the grown heterostructure
and the GaAs substrate are well separated around 20
-66. Comparison with the corresponding high-res-
olution spectra of Refs. 8 and 9 composed of a dense set
of Bragg peaks shows that here the peaks are generally
broader, and the underlying self-similar pattern,
governed in the Fibonacci case by powers of T: ', less
immediately obvious.

As shown in Figs. 2(a) and 2(b), the peaks on the
high-resolution spectrum, which are well resolved, can be
labeled by (2k+1)/3. 2P, with k and p integers, with an
accuracy of over ppp . It has been known for a long time
(see, e.g. , Ref. 20) that the intensity of the Fourier
transform of the Thue-Morse heterostructure of finite
length L =2" is

n —
1

I„(q)=2 "+sin (2~xq) . (4)
j=0

In the limit where n ~, this intensity, which is a Riesz

2224

product, defines a singular continuous measure and is a
"pure" case of the Lebesgue decomposition theorem. It
can be easily realized from Eq. (4) that q = —,

'
yields

identical values for all the factors of the product. Also,
defining the scaling properties of the intensity with sam-
ple size by

I„(q)=I. " ', (5)

it can be proven that a„(—,
' ) is, in fact, independent of

n and the largest scaling exponent. As a consequence
one can predict that when n increases, only those peaks
having an abscissa q of the form (2k+1)/3. 2i', with k
and p integers, will keep a sufficient intensity (these are
the values of q whose difference from —,

' is a dyadic I/2
with l and m integers), and they will become increasing-

ly dense. This is exactly what we observe. The fractal
nature of the spectral properties is obvious.

This can be understood yet in another fashion. In pre-
vious work, ' it has been proved that the energy spec-
trum of a 1D classical harmonic chain made of identical
springs and of masses of two diferent kinds arranged
after the Thue-Morse sequence is a Cantor-like set, and
that the value of the integrated density of states on each
of the gaps is precisely (2k+1)/3. 2i', with k and p in-

tegers (see also Refs. 29 and 30). Also, it was indicat-
ed, using perturbative methods, that the peaks in the
Fourier transform of the sequence itself generate and la-
bel the gaps of the energy spectrum of a tight-binding
discrete Schrodinger equation with its couplings deter-
mined by this very same sequence —closely related, via a
trivial mapping to the mass and spring equation. This
reasoning then leads to the same result.

Further observation of Figs. 2(a) and 2(b) clearly
shows that line shape and height evolve in a characteris-
tic fashion upon increase of n: Lines become thinner and
a„(q)increases with n for a given q. The intensities of
the x-ray-diA'raction pattern were carefully measured,
and then normalized in the same fashion as the (004)
reflection, which goes as L . The background level was
estimated from the diff'raction profile of the GaAs sub-
strate with no deposition. So, after the relevant process-
ing of the data, a„(q)could be measured from the I„(q)
values so obtained. A few calculated [from Eqs. (4) and
(5)] and measured values of a„(q)are summarized in

Table I. The uncertainty is estimated to be less than
0.06, about 4%, due in part to peak overlap. Note that,
for an atomic measure ("Bragg peaks"), one would have
a„(q)=2 for all n and all q in this situation. A detailed
line-shape analysis will be presented elsewhere.

X-ray-diA'raction patterns from perfect crystals are
composed exclusively of Bragg peaks whose positions, la-
beled by three integers (hkl), allow, together with ex-
tinction rules and intensity measurements, a complete
reconstitution of the structure. Patterns from incom-
mensurate samples, also composed of Bragg peaks, will

take at least four integers (hklm) to label their posi-
tions. ' In our singular continuous case, the peaks are
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FIG. 2. High-resolution x-ray-diffraction pattern of a GaAs-A1As Thue-Morse superlattice heterostructure with (a) 2' layers
and (b) 2' layers observed just above the scattering angle (2(I) of the GaAs (004) reflection. The dashed lines indicate peak assign-
ment to 2k+1/3. 2 (k and p integers) in units of qo (see text). Note the change in peak height and shape with sample size.

labeled by very specific rationals, but line shape and
height evolution as a function of wave vector and sample
size also carry information which can be specific of the
controlled disorder sequence generating the diffraction
pattern —at variance with the classical situation. It is
too early to decide whether a one-to-one correspondence
between x-ray-diffraction spectra of such heterostruc-
tures and their generating sequence can be established,

which would then allow the accurate understanding of a
large new class of disordered systems.

In conclusion, to the best of our knowledge, this is the
very first time that x-ray-diffraction spectra having the
essential properties of a singular continuous measure—even if these are finite-size samples —have been ob-
tained and understood. We have shown that this opens a
whole new field in the study of disordered systems, and
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TABLE I. Examples of values of a„(q)calculated and mea-

sured from the x-ray-diAraction patterns of Fig. 2 (see text).

q/qo
n =10

Calculated Measured
71 =7

Calculated Measured

I

3
1

6
5

l2
7

24

1.5849
1.4265
1.4580
1.4327

1.58
1.45
1.42
1.46

1.5849
1.3585
1.4082
1.3674

1.52
1.34
1.40
1.31
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