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Phase Separation of Asymmetric Binary Hard-Sphere Fluids
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On the basis of thermodynamically self-consistent integral equations for the pair structure it is shown
that dense binary mixtures of hard spheres, of diameters o.

l and 02, phase separate when the size ratio
crl/cry is less than 0.2, and the partial packing fractions of the two species are comparable.

PACS numbers: 61.20.Gy, 64.70.Ja, 82.70.Dd

Phase separation of binary liquid or fluid mixtures is a
very common thermodynamic phenomenon, even in sim-
ple atomic or molecular systems governed by excluded-
volume and van der Waals interactions. Miscibility gaps
in such simple mixtures are traditionally believed to be
induced by the van der Waals attractions which, in cer-
tain cases, favor homocoordination over heterocoordina-
tion. It has, however, become clear from recent experi-
mental and theoretical investigations of binary fluid mix-
tures at high temperatures and pressures, where attrac-
tive forces between molecules become negligible, that
phase separation may be induced by purely repulsive in-
teractions. ' These findings naturally raise the question
whether the simplest possible model for such mixtures,
namely, a binary mixture of hard spheres of diameters
o]&02, may exhibit phase separation in the fiuid phase.
Ever since Lebowitz and Rowlinson showed that within
the Percus-Yevick (PY) approximation, which may be
solved analytically for fluid multicomponent hard-sphere
systems, such mixtures are completely miscible for all
concentrations and size ratios, the generally accepted be-
lief is that binary hard-sphere fluids never phase sepa-
rate.

In this Letter we present strong evidence to the con-
trary, namely, that for highly asymmetric hard-sphere
mixtures, such that the size ratio y =crl/a2 differs con-
siderably from 1, phase separation sets in for packing
fractions typical of liquids. We consider a binary system
of N~ spheres of diameter at and Nq spheres of diameter
o2) crl (0&y & 1) in a volume V. The partial packing
fractions are g, =up o, /6 (a =1,2), where p, =N, /V is
the number density of species a; p=p]+p2 and g=g]
+g2 denote the total density and packing fraction. The
pair structure of the mixture is described by three partial
pair distribution functions g,p(r) and their Fourier trans-
forms, the partial structure factors S,p(k). Let pk
denote a Fourier component of the partial microscopic
density of species a. Density and concentration fluctua-
tions in binary mixtures are conveniently characterized
by the three structure factors S„„(k),S„,(k), and S„(k)
correlating linear combinations of the partial densities,
namely, pk =pl', +pk and pk =x 2pk

—x [pk, where x,
=N, /N. Phase separation is signaled by a strong
enhancement of concentration fluctuations which lead to

c)PP =1 —gppc, p(k =0),
c)pa p, p

(2)

diA'er from those obtained by numerical differentiation of
the virial pressure

PP 2'= 1 + g g xaxpo'apgap(crap)
p 3 a p

(3)

the divergence of the long-wavelength (k 0) limits of
the structure factors S,p(k) [where a(p) =1,2 or n, c],
when the spinodal line, which marks the limit of thermo-
dynamic stability, is approached. In particular, accord-
ing to elementary fluctuation theory,

Ãkg T
lim S„(k)= lim —(pk p' k) =

k 0 k 0 N (8 G/clxI )lv, p, T

where 6 denotes the Gibbs free energy, which turns from
a concave to a convex function of the concentration x]
on the spinodal. The pair structure may, in principle, be
computed "exactly" by numerical simulation (Monte
Carlo or molecular dynamics). For highly asymmetric
size ratios (y«1), in which we are interested here, con-
figuration sampling of mixtures where both species have
comparable volume fractions (rll =r12 and hence x2«xl
if y «1) runs into severe ergodicity problems, even for a
ratio of 3, thus precluding the numerical exploration of
more extreme size ratios.

For that reason we have turned to the numerical solu-
tion of thermodynamically self-consistent integral equa-
tions to explore the regime y«1 and g]=@2. Integral
equations supplement the coupled Ornstein-Zernike
equations, relating the total and direct correlation func-
tions h,&(r) =g,p(r) —

1 and c,~(r), by approximate clo-
sure relations. The familiar PY closure reads, for hard
spheres,

g,p(r) =e(r —cr,q) [I + y,p(r)],
where e(x) denotes the Heaviside step function, cr,s
=(o,+ap)/2, and the function y,p(r) =h,p(r) —c,p(r)
is continuous at contact (r =cr,p). The partial inverse
compressibilities, calculated directly from the k 0 lim-
its of the Fourier transforms of the direct correlation
functions, according to
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exp[y, p(r)f,&(r)/ —
1

g,p r =B r —cr,p 1+ f p(r)

where the switching functions f,p(r) are chosen to be of
the form 1 —exp(g, pr), with g,p assumed to be of the
simple scaling form g,p=(/o p, the RY closure depends
thus on a single dimensionless parameter g which is ad-
justed as in the BPGG case. An improved version of the
RY closure' (RY2) allows for two adjustable parame-
ters, (~~ and (zz, in order to satisfy the two thermo-
dynamic consistency conditions associated with the par-
tial (rather than the total) inverse compressibilities (2);

is chosen equal to ((~& '+(2z')/2. These various
closures have been extensively tested for a variety of fluid
systems ' ' and turn out to lead to very accurate
structural and thermodynamic results, particularly in the
case of purely repulsive pair potentials.

Using Gillan's hybrid algorithm, ' we have solved the
BPGG, RY, and RY2 integral equations numerically for
size ratios y=0.5, 0.2, 0.15, and 0.1; the PY equation

g]
gf

1 —
g2

392
exp

1 —
g2

302y+ ~
1+ "' y'+

When y((1 (i.e., a= 1 ) and/or tlat is not too large, the
value of gI calculated from (4) is very close to the upper
bound, q I

—g ~/( I —a tlat).
Figure 1 shows the reduced pressure P* =Po~/kaT vs

rt2 for qi, calculated from (4), fixed at the value riI =0.4;
the results from the PY, RY, and BPGG integral equa-
tions are shown for size ratios y =0.5, 0.2, and 0.1. The
pressure is seen to drop in all cases, but more and more
slowly as y decreases; in the continuum limit y =0, P*
would be constant. Thus working at constant g) is prac-
tically equivalent to maintaining a constant pressure, for
su%ciently small y. For y =0.5, the RY and BPGG re-
sults are indistinguishable, and go through a minimum
for @2=0.36. For y=0.2 and 0.1, P* varies almost
linearly with g2, the BPGG and RY results coincide
within 1%. In all cases the PY virial pressures lie below
the previous results, whereas the pressures calculated
from the compressibility (2) (not shown) would lie

with respect to the partial densities p . In order to over-
come this deficiency, generalized closures incorporate
one (or several) parameter that is adjusted in order to
enforce thermodynamic consistency. One of these clo-
sures, due to Ballone et al. ' (BPGG), assumes that

g,~(r) =B(r —o',p)exp{[1+sy,~(r)) 't' —1),

where the single parameter s is varied until the two esti-
mates of the total inverse compressibility, (dPP/Bp)„„
based on Eqs. (2) and (3), coincide. Another self-con-
sistent closure is due to Rogers and Young" (RY); in its
simplest version, applicable to binary mixtures, ' it reads

(4)

above.
However, a more detailed analysis of the PY predic-

tions reveals some severe discrepancies compared to the
results of the self-consistent integral equations. As al-
ready mentioned, the contact value g2q(a2) [which does
not affect the pressure much, due to the x2 factor in Eq.
(3)] increases rapidly as y 0. This increase is strongly
underestimated by PY theory, which predicts a slow 1/y
divergence; ' for example, the PY, BPGG, RY, and
RY2 closures predict g22(o2) =18.73, 97.38, 126.20, and
247.53, respectively, for y =0.1, gt =0.4, @2=0.04. This
means that the effective "stickiness" of the large spheres,
an osmotic depletion effect, ' ' is enhanced by the ther-
rnodynamically self-consistent closures.

This enhanced stickiness may be the physical origin of
the key result of our calculations, namely, the unexpect-
ed phase separation predicted by the RY and BPGG clo-

was also solved with the same code and the results com-
pared to the known exact solution, to provide a strin-
gent test of the accuracy of the numerical procedure.
This test is particularly useful in view of the very rapid
variation of gqq(r) near contact, where this function
takes on very large values. ' '

The phase behavior of fluid mixtures is normally stud-
ied at constant pressure, e.g. , by calculating G as a func-
tion of concentration x), for fixed pressure and tempera-
ture. This procedure is very cumbersome when integral
equations are used, since these yield the pressure as out-
put, for given values of concentration and density. On
the other hand, we expect a continuum limit to hold for
y(&1, when the small spheres may be considered as
forming a fluid occupying the volume V' & V left by the
large spheres; the total pressure should then be essential-
ly equal to that of a one-component hard-sphere fluid of
packing fraction ttI =trN~o~/6V', the contribution of the
large spheres being negligible, since N2(&N~. Conse-
quently, we have solved the integral equations for fixed

g) and increasing g2, a situation typically achieved by
adding colloidal particles to a concentrated suspension in
an incompressible solvent.

There remains to relate the effective g] to the input
packing fractions tt~ and qq. Clearly, V —Nett(o~
+o2) /6 & V'& V —Nqtto2/6, and hence q~/(1 —qq)
& rtI ( tt~/(1 —art2), where a =(1+y); the two bounds

coincide in the continuum limit y 0. For small, but
finite values of y, V' may be calculated from the exact
relation V'=Vexp[pp~'"(tl~ =0)l (Ref. 17) and from the
scaled particle' estimate of the chemical potential of
species 1 in an infinitely dilute (ri~ =0) solution of these
spheres in a fluid of large spheres of packing fraction g2.
An elementary calculation leads to the following desired
result:

@2+@2+g2
2 3

(1 —q, ) '
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FIG. 1. Reduced pressure, P* =Pai'/k&T, vs r12 for gI =0.4.
The solid curves, dashed curves, and circles are for the RY,
PY, and BPGG closures, respectively. Lower curves, y=0.5;
middle curves, y =0.2; upper curves, y =0.1.

FIG. 2. Ratio A=xix2/S„(0) vs g2 for ill =0.4. Solid
curves, dashed curves, and circles are for the RY, PY, and
BPGG results, respectively. Curves labeled from 1 to 4 are for
size ratios y =0.5, 0.2, 0.15, and 0.1. The crosses correspond to
the RY2 closure for y =0.1.

sures for suSciently small values of y. The situation is
summarized in Fig. 2, where we have plotted the results
of the various closures for the ratio A=xlxq/S„(k =0)
[cf. Eq. (1)1 as a function of t)2 for fixed gi. In an ideal
mixture A would equal 1, the limiting value when g2

0. On the contrary, A goes to 0 on the spinodal line
of a phase separation. The mixture with the size ratio
y =0.5 still behaves almost ideally, and the predictions of
the PY, RY, and BPGG equations are rather close for
all g2. The situation changes dramatically for smaller y.
While the PY closure always yields an increase of A with

g2, i.e., a reduction of concentration fluctuations, the RY
closure exhibits the opposite tendency, i.e., an increasing-
ly rapid drop of A with g2 as the size ratio is reduced.
For y =0.15, and even more so for y =0.1, concentration
fluctuations become very strong, leading to a sharp peak
in S„(k) at k =0, the amplitude of which appears to
diverge as g2 increases. This divergence causes severe
numerical problems, and no convergence of the iterative
procedure could be achieved beyond some critical value
of gz. However, any reasonable extrapolation of the data
shown in Fig. 2 shows that A will go to 0 (i.e., the spino-
dal is reached) at r12=0.12 when y =0.15 and gal=0. 05
when y =0.1. The RY results for y =0.1 are confirmed
by the improved RY2 closure.

The data based on the BPGG closure show a much
more gradual tendency towards phase separation as y de-
creases. In fact, the curvatures of the A(g2) curves
based on the two closures are opposite, but for y =0.1

the slope of the BPGG curve appears to be sufhcient to
ensure that A will go to 0 for g2 ~ 0.2.

All results discussed so far are based on the value of gi
estimated from Eq. (4), which leads to a drop in pressure
with increasing q2 (cf. Fig. 1). If ql is taken to be equal
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FIG. 3. Same as in Fig. 2 (without PY results), but for r)I

calculated from the continuum limit gi/(1 —gq) [rather than
from Eq. (4)], and fixed at the value 0.4. Upper curves,

y =0.2; middle curves, y =0.15; lower curves, y =0.1.

to the continuum limit teal/(I
—

tlat), even for finite values
of y, the resulting pressure increases slowly with g2, the
corresponding results for A(ri2) are shown in Fig. 3. In
this case the RY and BPGG results are seen to be quali-
tatively and quantitatively much closer than in Fig. 2.
This improved agreement reinforces our belief that the
predicted phase separation indeed occurs for size ratios
y(0.2. Finally, calculations carried out for a higher
eA'ective packing fraction (pl =0.45) show the same gen-
eral behavior, but with an enhanced tendency towards
phase separation. It is worth noting that, although the
critical g2 appears to go to zero with the size ratio y, a
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simple perturbational analysis (e.g. , in powers of tlat) is

precluded by the strong divergence of the contact value
g(crq) in that limit.

We have presented strong evidence that when large
spheres are dissolved in a fluid of small spheres a misci-
bility limit is reached for sufTiciently small values of the
size ratio. The question naturally arises of the nature of
the conjugate phase, coexisting with the saturated solu-
tion of large spheres. In the numerical search for solu-
tions of the integral equations at higher concentrations of
large spheres (presumably beyond the miscibility gap),
we were unable to detect a second fluid phase. Our con-
jecture is that the saturated mixture coexists with two
crystal phases, of very diA'erent compositions.

To conclude, we would like to point out a fundamental
diAerence between the present results and earlier obser-
vations of phase separation in less asymmetric "soft"-
sphere mixtures. ' In the latter case, the free energy
has an internal energy contribution, which means that
the underlying eA'ective hard-sphere mixture must be
characterized by nonadditive diameters. A positive non-
additivity [i.e., a|q ) (o 1+az)/2] is known to drive
phase separation, for obvious steric reasons. The misci-
bility gap discussed in the present work is perhaps more
unexpected, since it is of purely entropic nature, with
strictly additive hard-sphere diameters. Its physical ori-
gin may be ascribed to the eA'ective attraction (sticki-
ness) between the large spheres induced by the osmotic
depletion efI'ect. This attraction, of entropic origin, then
leads to the clustering of the large spheres which thus
will form a concentrated suspension (within the "sol-
vent" of small spheres), in equilibrium with the dilute
phase, the thermodynamic stability limit of which has
been explored by the present integral-equation results.

The authors are indebted to G. Pastore for making his
efticient integral-equation code available and for helpful
comments. Laboratoire de Physique is Unite de Re-
cherche Associee No. 1325 du Centre National de la Re-
cherche Scientifique.
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