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We represent ring polymers in free space with the rod-bead model and show through unbiased com-
puter simulations that the probability of observing a trivial self-entanglement (P) has a decreasing ex-
ponential dependence on the contour length (V) of the polymer, or that P =exp(—N/No). The charac-
teristic length (Vo) varies by many orders of magnitude depending on chain flexibility and solvent quali-
ty. We also suggest that sufficiently large knots are always composite, not prime.

PACS numbers: 61.41.+e, 36.20.Ey, 36.20.Fz, 84.20.+m

Both chemists and biochemists have synthesized poly-
meric rings. Once a ring is formed, its topological state
is uniquely defined and invariant, at least until a bond is
broken. Any nondestructive manipulation— like stretch-
ing, bending, or folding— will not impact a ring’s topo-
logical state. While natural (circular) DNA is unknot-
ted, synthetic rings can exhibit very complex knotted
configurations. 2

A great deal of theoretical effort has been expended in
the study of entangled systems, since both the dynamic
and the thermodynamic properties of such systems are
functions of their topological state.>"'® The simplest sys-
tem that exhibits entanglement is a single-ring polymer.
More complicated polymeric systems that are of interest
are a ring linked to a wire (this problem bears an in-
teresting relation to the Aharonov-Bohm effect'?), rings
linked to each other, and networks.

A most fundamental question about self-entanglement
has been posed by Delbriick:! How does the probability
of observing self-entanglement (1 —P) in a ring depend
on the contour length (V)? Delbriick’s question has so
far proven resistant to all analytical attacks, so several
numerical efforts have been attempted by various
researchers. =16

Much of the early numerical work''"'? was done on a
lattice (instead of in free space); biased methods were
used to generate ring polymers, and systems were small.
Later work'4 fixed many of the aforementioned prob-
lems, where the polymers were modeled off lattice and
properly formed, but computer technology at the time
was not sufficient for researchers to study systems with
very large sizes and good statistics. The most well re-
ceived work to date seems to be that of Michels and
Wiegel, '*!°> which suggests that a power law relates P to
N for Gaussian chains. (A Gaussian chain has r=0 for
the model that we describe shortly.)

In this work, we study unbiased rings in free space,
which seem to be the largest analyzed to date (by almost
an order of magnitude), and for the first time attempt a
methodical study of the effects of the polymers’s exclud-

ed volume and flexibility on knotting. We believe that a
decreasing exponential relates P to N, or that P
=exp(—N/Ny), where the characteristic length (Ng)
can vary by several orders of magnitude depending on
the flexibility of the rings.

We represent ring polymers with the free-space rod-
bead model.!” Two parameters are required to create a
model instance: the contour length (/V) and the bead ra-
dius (r). A ring is composed of a closed backbone of NV
unit bonds. At the NV vertices where two bond ends abut,
we imagine beads, each of radius . If any two beads in-
tersect, the excluded-volume condition is said to be
violated, and the entire instance must be rejected. A
small r represents a flexible polymer in an ideal (©) sol-
vent, while a large r represents a swollen (and less flexi-
ble) polymer in a good solvent.

We produce ring-polymer model instances with the di-
merization method of Chen.'* This method is preferable
to alternatives'’ for three reasons: It is unbiased, it is
very efficient in terms of computer time, and it is well
suited to parallel architectures.

The rings produced by dimerization each have a
unique topological state, and can be characterized by a
knot invariant known as the Alexander polynomial
A(s).'81% Other more elaborate invariants exist, like the
Jones polynomial,?® but their complexity makes them
difficult to efficiently calculate, so we follow the lead of
other researchers and use A(s).

The Alexander polynomial is a true invariant, in that a
given knot will always be represented by the same A(s),
no matter how much we bend, fold, or stretch it. How-
ever, there are cases where aliasing exists; that is, two
knots in different topological states can lamentably share
the same A(s). For example, Fig. 1 demonstrates that
A[5|] =A[10|32] and that A[S]()] =A[(3|)(3|)(3|)]. It is
particularly unfortunate that some common combina-
tions of simple prime knots [like a granny knot,
(3;)(31)] can be mistaken for more exotic prime knots
(like 819).

Given a knot, there is a simple algorithm to determine
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FIG. 1. Knots 5; and 10,3, share the same Alexander poly-

nomial, A(s)=s*—s3+s?—s+1, as do knots 8j0 and
(3))(3,)(3;), which have A(s)=s5s°—3s+6s5*—7s3+6s2
—3s+1.

its Alexander polynomial.'®'®!"" However, one step re-
quires taking the determinant of an M by M matrix of
polynomials, where M +1 is the number of bond-bond
crossings observed when the knot is properly projected
onto a plane. Even using Gaussian elimination to take
the determinant requires time M 3, which can be prohibi-
tive in the study of large systems; it is easy to get many
hundreds or even thousands of crossings.

It is advantageous to preprocess a ring in such a way
as to reduce the number of crossing (M +1) that it
displays when projected onto a plane. We have devel-
oped a very simple smoothing operation that properly
maintains any ring’s topological state while significantly
reducing M +1; if the triangle defined by any three
sequential beads is not crossed by any bond, the middle
bead is removed and the two survivors are directly con-
nected. This operation does distort the ring, but the un-
derlying topological state is properly maintained. This
operation can be done very efficiently, in time N In(N),
frequently to the point where the resulting ring has three
beads left, with zero crossings. We feel that many en-
tanglement problems are impractical unless one strives to
remove detail that is irrelevant to the underlying topo-
logical features.

After smoothing a large ring, it is not efficient to im-
mediately start the expensive Gaussian elimination. It
often becomes apparent that one has a composite knot
that is composed of several factors.?' If a knot is com-

A()=A()~A()-

FIG. 2. If a knot can be “factored” into two parts as indi-
cated, the A(s) of the entire composite knot is the product of
the Alexander polynomials of the constituents.
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FIG. 3. A semilogarithmic plot of the probability of observ-

ing a trivial knot (P) as a function of the number of beads in a
ring (V), for several values of bead radius (r).

posed of parts 4 and B, as in Fig. 2, Al4B]1=AlA]A[B].

Given that the identification time goes as M 3. “halv-
ing” the problem results in a fourfold speedup. [A
second benefit is that it is sometimes possible to identify
a (3,)(3,) without concern that it might be an 85, for
example.] We calculate determinants by using Gaussian
elimination to solve a system of polynomials, utilizing
symbolic methods.?? It is possible to avoid symbolic
computation altogether [by precompiling tables of
A(s=—1) and A(s = —2) for known Alexander polyno-
mials], but one gives up the ability of identifying new
large knots.'""2! We have indeed found knots with more
than ten crossings,Z' the size of the knot table that we
have used, '® but this happens rarely.

Figure 3 is a semilogarithmic plot of the probability of
observing a trivial knot (open loop), P, as a function of
the number of beads, N, for various values of bead radius
r. Each point represents 5000 rings. The error in P is
2%, given a 95% confidence interval. We see a linear fit,
and therefore propose the empirical relation P(N)

TABLE 1. The characteristic length (No) and radius-of-
gyration exponent (v.r) as functions of bead radius (r).

Radius No Veft
0.01 2.6x102 0.51
0.1 4.0x102 0.54
0.15 8.7x102 0.57
0.2 2.4x10° 0.59
0.25 1.5x10* 0.60
0.3 1.1x10° 0.60
0.4 3x10° 0.61
0.499 8x10° 0.61
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TABLE II. The most common knots found as functions of the number (V) and radius (r) of the beads. An asterisk suggests a

possible composite (nonprime) knot.

Size r=0.01 r=0.1 r=0.15 r=0.2 r=0.25 r=0.3 r=04 r=1/2

32 0.1,3.1,4.1,5.2,5.1, 0.1, 3.1, 4.1, 5.2, 0.1, 3.1, 4.1, 5.2, 0.1, 3.1, 8.20%, 0.1, 3.1 0.1 0.1 0.1
8.20*, 6.2 8.20*, 5.1, 6.1, 6.3.... 6.2 4.1

64 0.1,3.1,4.1,5.2, 5.1, 0.1, 3.1, 4.1, 5.2, 5.1, 0.1, 3.1, 4.1, 5.1, 0.1, 3.1, 4.1, 0.1, 3.1 0.1 01 0.1
8.20*, 8.21*, 6.1, 6.2.... 8.20*%, 6.1, 8.21*.... 5.2, 8.20%, 6.2.... 8.20*, 5.2, 6.1

0.1,3.1, 4.1, 5.2,
8.20%, 5.1, 8.21%,

128 0.1, 3.1, 4.1, 5.2, 8.20%,
5.1, 8.21%, 6.2, 6.3, 6.1,

0.1, 3.1, 4.1, 8.20*%, 0.1, 3.1, 4.1,
52,51, 6.2, 6.1,

0.1, 3.1, 41 0.1, 0.1 0.1
8.20*%, 5.2, 5.1, 03

7.6, 8.18*, 7.5, 8.10*.... 6.2, 6.1, 7.6, 6.3.... 8.21%, 7.6, 8.10*.... 6.2

256 0.1, 3.1, 8.20*, 4.1, 5.2, 0.1, 3.1, 8.20%, 4.1, 0.1, 3.1, 4.1, 8.20%, 0.1, 3.1, 8.20%, 0.1, 3.1,4.1 0.1, 0.1 0.1
5.1, 8.21%, 6.2, 6.1, 5.2,5.1, 8.21%, 6.2, 5.2,5.1, 8.21*%, 6.1, 4.1,5.1, 5.2, 3.1,
8.18*, 8.10%, 8.11%*, 8.10%, 6.1, 6.3, 8.18*, 6.2, 8.10*%, 6.3, 7.5, 6.1, 7.6, 7.3, 5.1
6.3, 7.5, 7.7, 7.2.... 10.159*, 7.5, 7.6....  10.159*, 8.8*.... 8.21*, 7.5

512 3.1, 0.1, 4.1, 8.20%, 5.2, 3.1, 0.1, 8.20%, 4.1, 0.1, 3.1, 8.20%, 4.1, 0.1, 3.1, 8.20*, 0.1, 3.1, 0.1, 0.1, 0.1,
5.1, 8.21*, 8.10*, 6.2, 5.2, 8.21*, 8.10%, 5.1, 8.21%, 5.2, 5.1, 4.1, 8.21%, 52, 4.1,820* 3.1 31 3.1
8.18*, 6.1, 7.6, 6.3, 6.2, 8.18*%, 6.1, 7.6,  8.10*%, 6.2, 8.18*, 5.1, 8.10%, 6.1,

10.65*, 7.5, 8.11*.... 10.65*, 6.3, 8.11*....

7.6, 6.1, 6.3....

10.40*, 10.137*....

1K 3.1, 8.20%, 4.1, 5.2, 3.1, 0.1, 8.20%, 4.1, 0.1, 3.1, 8.20*, 0.1, 3.1, 0.1, 0.1, 0.1,
0.1, 5.1, 8.10%, 8.21*, 8.21*, 8.10%, 5.2, 4.1, 5.2, 8.21*, 8.20*% 4.1, 3.1, 3.1
8.18*, 6.2, 10.65*.... 5.1, 8.18*.... 5.1, 8.10%, 62 5.2, 6.1.... 4.1 4.1

2K 3.1,4.1,52,5.1, 3.1, 8.20%, 4.1, 0.1, 3.1, 8.20*, 0.1, 0.1, 0.1,
8.20%, 6.2, 6.1, 8.21*, 0.1, 8.10*%, 5.2, 4.1, 8.10%, 3.1, 31 3.1
8.10%, 6.3, 8.18*....  8.21* 8.18+% 5.1... 8.21*% 5.2, 5.1... 8.20*....

=expl—N/Noy(r)], where No(r) is a characteristic size
that depends on the bead radius.

Table I illustrates how the characteristic length (Vg)
and the exponent ver depend upon bead radius (r). (The
radius of gyration of the polymer is proportional to
N™") We observe from Table I that Ny is extremely
sensitive to the quality of the solvent and the chain
stiffness, and that the rings are far more knotted under
ideal conditions (ver~ ¥ ) than in good solutions (veg
~ % ). Because the characteristic length (Vo) becomes
significantly larger than the sizes of the systems that we
were able to study at bead radii above 0.2, estimates of
the characteristic length for large values of the radius
are clearly questionable. For values of the bead radius
at and below 0.2, the error in Ng is 5%. The reader will
note that Table I indicates that only the data for r =0.2
reach the asymptotic regime (where veg=0.5889). The
chains that feature smaller or larger beads are too short
to reach the limiting value of ves, and are still in the
crossover regime, from the random coil and stretched
states, respectively.

In their work, Michels and Wiegel'®'® have proposed
an empirical fit P(N)=Cm"N? where m =0.9964,
a=0.0088, and C =1.026. Given that m is less than uni-
ty, C is close to unity, and a is so close to zero, their for-
mula is—for all practical purposes— indistinguishable
from ours, except that their value for No(r=0) is 277.
We do not find this discrepancy in Ny to be too surpris-
ing because the rings that they studied were of N =300,
which is only comparable to Ny, and an estimate of their
Ny is extremely sensitive to the least significant figure of
m.

Table II provides the most common knots observed at

various combinations of /V and r. After observing hun-
dreds of computer-generated figures, we strongly suspect
that the knots marked with an asterisk in Table II are
rarely prime and are in fact usually composite. If this
is true, 80— (31)(31), 80— (31DB)B), 10;3
— (4,)(3,), 10y37— (4,)(4,), 83— (4.)(3)3)), 81
— (4,)(3)), etc. It is possible (but expensive) to deter-
mine what fraction of these knots are in fact compos-
ite.?’ We have made a few dozen rings with 16384
beads, and each one always contained numerous trefoil
(31) knots, leading us to conjecture that very big systems
are always composite.

In summary, we conclude that the probability of ob-
serving a trivial knot in a ring polymer is an exponential-
ly decreasing function of chain length and that the
characteristic length for nontrivial rings (/V¢) changes by
at least 3 orders of magnitude when the solvent quality is
changed, i.e., while the radius-of-gyration exponent (veg)
changes from § to 2. These conclusions are based on
very large rings, created off lattice, without any statisti-
cal bias, for different solvent qualities.
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