VOLUME 66, NUMBER 17

PHYSICAL REVIEW LETTERS

29 APRIL 1991

Instability Criteria for the Flow of an Inviscid Incompressible Fluid
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We present a geometric estimate from below on the growth rate of a small perturbation of a three-
dimensional steady flow of an ideal fluid and thus we obtain effective criteria for local instability for
Euler’s equations. We use these criteria to demonstrate the instability of several simple flows and to
show that any flow with a hyperbolic stagnation point is unstable.

PACS numbers: 47.20.—k

In a companion paper Vishik and Friedlander' obtain

a universal geometric estimate from below on the growth
rate of a small perturbation of a three-dimensional
steady flow of an inviscid incompressible fluid. In this
Letter we discuss certain implications concerning insta-
bility for Euler’s equations that follow from the existence
of this estimate and we demonstrate that the estimate
gives effective criteria for local instability. In particular,
the existence of a hyperbolic stagnation point implies
that the steady flow is unstable. An important feature of
our approach which allows us to obtain effective criteria
is that, unlike many previous approaches to hydro-
dynamic stability, we do not study the spectrum but
rather we consider the growth rate of the relevant
Green’s function as ¢t — oo,

There is a very extensive literature concerning the field
of hydrodynamic stability (for references see, for exam-
ple, Drazin and Reid?). We briefly mention some of the
work whose techniques are related to those that we em-
ploy. Eckhoff and Storesletten® and Eckhoff* study the
stability of azimuthal shear flows of a compressible fluid
and more generally symmetric hyperbolic systems using
an approach based on the generalized progressing wave
expansion.>® Eckhoff shows that local instability prob-
lems for hyperbolic systems can be essentially reduced to
a local analysis involving ordinary differential equations
(ODE) and algebraic equations only. We show that the
same conclusion can be drawn for Euler’s equations for
an ideal fluid. These equations do not form a hyperbolic
system; hence several additional technical details arise in
the analysis. Bayly’ studies the stability of quasi-two-
dimensional steady flows via an analysis of a Floquet sys-
tem of ODE. He shows that the Floquet exponent gives
the growth rate for a family of instabilities which include
the Rayleigh centrifugal instability, the Leibovich-
Stewartson columnar instability, and the elliptic vortex
instability. We note that the instability criteria that we
present in this Letter are equivalent to those of Bayly
in the particular case of quasi-two-dimensional steady

flows. Lifschitz® uses WKB methods to construct part of
the continuous spectrum for axisymmetric steady flows.
Using methods inspired by magnetohydrodynamics, he
obtains a necessary stability condition for a vortex ring
with respect to localized three-dimensional perturba-
tions.

Let u(x) be a steady solution of Euler’s equations
governing the motion in 3D of an inviscid incompressible
fluid:

(u-V)u=-VpP, ¢))
V-u=0. 2)

The 3D vector field u(x) denotes the velocity and the
scalar field P(x) denotes the pressure in the fluid. We
consider the linearized Euler equations for a small per-
turbation velocity w(x,z). Let o be the exact growth
rate of the perturbation of the equilibrium solution. In
other words, o is the maximal real part of the spectrum
of the operator

w— —(uV)w—(w-V)u—VQ, (3a)
V-w=0, (3b)

acting in the space of square integrable sotenoidal vec-
tors: VQ is chosen in a unique way to ensure that the
right-hand side of (3a) has zero divergence. We discuss
here only the cases of periodic boundary conditions for
both u and w and the free-space problem. We assume
that u is smooth and moreover in the free-space case we
assume that derivatives of u are uniformly bounded.
Using techniques of WBK-type asymptotic expansions,
which are analogous to those previously used in the
dynamo problem, Vishik and Friedlander! construct the
approximate Green’s function for the operator (3a) and
(3b). It proves useful to partition the Green’s function
into high-frequency and low-frequency parts. We note
that for purely technical reasons it is more convenient to
work with the adjoint problem which, of course, does not
affect the stability results that we now present. Our ap-
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proach yields the result that the growth rate o is bound-
ed from below by the following universal quantity of
geometric nature:

fim (1/t)In sup ||b(xo,&0,0)|| <o 4)

t— oo X0.£0.bo
[Eol =1,bg & =0
The vector b(xg,&o,2), which is the first term of the am-
plitude of a high-frequency wavelet localized at x, is ob-
tained from the following system of ODE:

x=—ulx), )
a T
b u
E= v £, 6)
ou |’ &
D — _ | ou — .
b= Bx] b [(Vxu)xb-gl s, @)

with initial conditions at t =0
x=xo, £§=&o, b=bo, (8)

where &y bo=0. The quantity &o/|&| is the direction of
a spatial wave vector. The matrix du/dx has components
du;/0x;, i,j=1,2,3.

The sufficient condition for the instability given by (4)
is a precise mathematical formulation of the concept of
local instability widely discussed in the physical litera-
ture. We emphasize that the left-hand side of (4) in-
volves the supremum; hence any Lagrangian trajectory
of the flow [see (5)-(7)] could provide a positive value
on the bound from below on o and thus imply instability.
It is of interest to note that criteria (4) gives a hydro-
dynamic analog of the criteria for a magnetic dynamo
instability in an infinitely conducting fluid. The growth
rate of the vector b satisfying (7) is an analog of the
Lyapunov exponent of a dynamical system. From a
mathematical point of view it appears natural to look at
(7) as a linear equation over the trajectory of the system
(5) and (6), which is the system in “covariations” (i.e.,
the evolution of a covector) for the initial dynamical sys-
tem given by (5). We point out that the reverse direc-
tion of the flow appears only for the technical reasons
that make it more convenient to work with the adjoint
problem.

We now illustrate, via two simple examples, the fact
that (4) is an effective criteria for instability in the flow
of an inviscid incompressible fluid.

(1) Consider the 2D steady flow given by the stream
function y =sinx,sinx,. To demonstrate instability it is
sufficient to show that the geometric quantity on the
left-hand side of (4) is positive along the trajectory (5)
and (6) over one stagnation point. For simplicity, we
consider the origin (0,0). In this example

du T_l 0
T lex | 0 —1

and Vxu=0 at (0,0); hence Eq. (7) for b has an ex-

ponentially growing solution and the left-hand side of
(4) is positive.

(2) Consider a 3D example of so-called “4ABC” flows
which are of interest in dynamo theory:

U} =cosx, —sinxs3, u»=cosx;—sinx;,
U3=C0SX| —Sinx,.

At the stagnation point x| =x,=x3=n/4,

T |011
- [g_] ~li o1

X 110
and Vxu=0. It is easy to see that the above matrix has
a positive eigenvalue, namely, 2; hence Eq. (7) for b has
an exponentially growing solution.

More generally, the existence of any hyperbolic stag-
nation point in the steady flow u(x) gives rise to a posi-
tive lower bound for o from the criteria (4) and hence
such a flow is locally unstable. (A point x; is a hyperbol-
ic stagnation point when the spectrum of the matrix
du/dx at x, does not intersect the imaginary axis.) The
following arguments justify this statement. We denote
by A the matrix (du/dx)7 at the stagnation point x,.
For the 2D problem let a + denote the normalized eigen-
vectors of 4 corresponding to eigenvalues * A, where A
is real and positive. Then £=ae" is a solution of (6)
along the trajectory x(z) =x¢. It is easy to see that

b(z)=[a_—ai(at+-a_)]le

satisfies Eq. (7) and hence there exists an exponentially
growing solution. In the 3D problem the fact that u(x)
is a steady solution of Eulers equation implies that 4 has
as least one real positive eigenvalue A with an eigen-
vector that we denote by a. We choose &=ae™. It is
easy to see that the matrix A satisfying Ap=—An
+(A4n-a)a has a spectrum in the invariant subspace of
vectors perpendicular to a given by the negative of the
pair of eigenvalues of 4 distinct from A. Hence Eq. (7)
has an exponentially growing solution and thus by cri-
teria (4) o is positive. We note that the stability of cer-
tain very special flows which are exact solutions of the
Navier-Stokes equations has been considered by Craik
and Criminale.® Our results specialized to these flows
are consistent with the stagnation-point instability ob-
served by Craik and Criminale,’ who show that under
conditions this instability may persist in the presence of
viscosity.

We remark that for plane-parallel shear flows the
geometric quantity on the left-hand side of (4) is zero
and hence this criteria says nothing about plane shear
flow instability.

The results described above for a homogeneous fluid
can easily be extended to the case of an inhomogeneous
unbounded fluid in a gravitational field. We assume that
the Boussinesq approximation is valid. The extension of
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(5)-(8) in this situation is given by the following system:

x=—ulx), )

3 T
P | U
&= Bx] g, (10)

T
p=— [22] b—{[(Vxu)xb—rVpl- &= —rVp,
9x &l
an

F=—b- Vb, 12)
with initial conditions at ¢ =0,

x=xo, £=&, b=by, r=ro, 13)

where &y- by =0. The symbols p and ® denote the densi-
ty distribution of the steady flow and the gravitational
potential, respectively. We assume that u, Vp, and Vo
and their derivatives are bounded as |x|— 0. In the in-
stability criteria analogous to (4), b is replaced by the
four-component vector (b,7) and the supremum is taken
over Xo, &0, bo, ro; &0 bo=0.
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