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High-Order Harmonic Generation in Xenon at 1Q64 nm: The Role of Phase Matching
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We present a completely ab initio calculation of harmonic generation in xenon exposed to a strong
laser field. The time-dependent Schrodinger equation for the atomic response and the propagation equa-
tion are numerically integrated yielding excellent agreement with experiment. The weaker variation
with pump intensity of the induced dipole in the high-field regime leads to an enormous enhancement in

phase matching compared to the perturbative limit and a defocusing of the generated harmonics.

PACS numbers: 42.65.Ky, 32.80.Rm

Recently, considerable theoretical work has been done
on high-order harmonic generation by a single atom ex-
posed to a strong radiation field. ' This has been stimu-
lated by experimental results obtained in the rare gases
by Rhodes and co-workers using a KrF laser (248 nm)
and by the Saclay group with a Nd-doped yttrium-
aluminum-garnet laser (1064 nm). These latter experi-
ments show the production of very-high-order odd har-
monics, e.g. , up to the 33rd harmonic in Ar at 1064 nm
and 3 x 10' Wcm, with a characteristic intensity dis-
tribution: a rapid decrease between the third and the
fifth harmonic, a plateau of approximately constant in-
tensities extending from the fifth or seventh harmonic to
a high-order harmonic, and finally a cutoA. Most calcu-
lations of the emission spectrum of individual atoms in

strong fields which go beyond perturbation theory quali-
tatively reproduce this behavior. ' This result is sur-

prising since the observation of harmonic generation re-
quires that in addition to strong single-atom emission
there be proper phase matching between the induced and
driving fields. Phase matching can depend strongly on
the order of the nonlinear process, leading to the expec-
tation that the single-atom and macroscopic spectra will

have very diAerent distributions. In fact, quite general
considerations lead to the conclusion that any plateau in

the single-atom response should be destroyed by the
eA'ect of propagation in a focused-beam geometry.
Here we do three things: We present the first ab initio
calculation of high-order harmonic generation in a rare
gas taking account of both the single-atom response and
propagation effects in a nonperturbative way, and com-
pare the results to experimental data;' we explain the
role of phase matching in a strong-field regime and
resolve the paradox presented above; and we discuss the
implication of our results for future experiments.

Phase matching is traditionally addressed in terms
of the variation of the phases of the interfering fields
throughout the nonlinear medium. '' ' Two effects are
important: dispersion, since waves at different frequen-
cies travel at different speeds in the medium and there-
fore get out of phase with each other, and focusing.
Focusing introduces a geometrical phase slip, which is

different for the harmonic field and its driving polariza-
tion. The induced phase mismatch increases dramatical-
ly with increasing harmonic order. In recent experi-
ments, ' the density was low so the dispersion was
small, but the beam was focused to achieve a high in-

tensity. Therefore one would expect, based on the argu-
ments just given, that no plateau (or even any significant
number of high harmonics) would be observed. Al-

though these arguments are usually associated with the
weak-field limit, ' they are quite general and it is hard to
see how going to a strong-field regime would modify
them significantly. The main conclusion of this Letter is

that phase matching also depends, in a crucial manner,
on how the amplitudes of the fields vary throughout the
medium. It is in this regard that the strong-field regime
differs most strikingly from the weak-field limit. In the
latter case, the nonlinear polarization which is propor-
tional to the single-atom response, varies as the qth
power of the incident field, q denoting the harmonic or-
der. This means that high-order harmonic production is

strongly concentrated in the center of the focal volume.
In a strong field, the nonlinear polarization varies much
less rapidly with the incident field and behaves similarly
for all of the harmonics in the plateau. This increases
the volume in which the harmonics are generated, bal-
ances the rapid loss of coherence brought about by focus-
ing, and leads to constant phase-matching factors for the
high harmonics.

To calculate the harmonic yield in the strong-field re-

gime, we solve the propagation equation in the far field

using an integral formulation of Maxwell's equations.
The qth harmonic field Cq with wave vector kq is'

where R = ~r —r'~, co is the laser frequency, and P~ is the
nonlinear polarization field. We introduce the slowly
varying envelopes E~(r) =8~(r)exp( —ikqz) and Pq(r)
=P~(r)exp( —iqk~z), where z is the propagation axis,
and make the paraxial approximation. The harmonic
profile in the far field ((z —z'~ && (x —x'~, ~y

—y'() be-
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comes an integral over the nonlinear medium:q'5

~ Pq(r)exp(if+ hkdz") ik, (Ix —x'I'+ Iy
—y'I')

exp q, d3r. (2)

Here Ak =kq
—qk| denotes the (z-dependent) linear

phase mismatch, including absorption. We assume that
the qth harmonic field is produced by the fundamental
field and not by other (lower-order) harmonic fields. We
can write the incident field as

R[E( )' " "]=R[IE|(r )I' " ""')
The polarization field Pq is then equal to 2JV(z)dq(r,
z)e 'q~ ",where JV(z) denotes the (local) atomic den-
sity and dq(r, z) is the qth harmonic component of the
time-dependent dipole moment evaluated for a field
strength IE|(r,z) I. Note that the geometrical phase
qp(r, z) introduced by focusing depends only on the pro-
cess order q and not on the laser intensity.

The single-atom response dq is obtained from the wave
function generated by numerically integrating the time-
dependent Schrodinger equation for an electron in a
pseudopotential that describes well the xenon valence or-
bital. ' It is calculated over a fine intensity grid, be-
tween 0.S x 10 ' and 5 x 10 ' W cm . The harmonic
components first increase rapidly with the laser intensity
(as in the weak-field picture), and then more slowly, with
numerous structures and resonances. On average the in-
crease with intensity is much less than expected from
lowest-order perturbation theory, particularly at the
highest intensities. The single-atom emission spectrum
exhibits the plateau structure referred to above.

The macroscopic parameters of the interaction (pres-
sure, focusing, etc.) are chosen to mimic the experiinen-
tal conditions of Ref. 10. The gas density is described by
a Lorentzian in the z direction with a width at half max-
imum of L =1 mm and a maximum density JVp equal to
5.3&&10' atoms/cm (15 Torr). It is taken to be zero
outside a 2-mm interaction length. The incident laser
beam is assumed to be Gaussian and we consider two
cases with confocal parameters b =4 or 1 mm. We use a
36-ps Gaussian pulse. For consistency, depletion of the
neutral medium due to ionization, which becomes sig-
nificant above 2x10' Wcm, has been introduced by
using ionization rates obtained from the same time-
dependent calculations that were used to produce dq.

The number of photons emitted at a given harmonic
frequency is obtained by integrating the harmonic inten-
sity profile,

Nq = IEq(r', t) I
r'dr'dt .

4qh. co &

In Figs. 1(a) and 1(b), we compare in absolute value
calculated and measured yields for several peak laser in-
tensities. The theoretical curves are slightly high, partic-
ularly for the highest-intensity result, but are still gen-

Vq =4hNq/tr b r JV IdqI (3)

where ~q is the integral of the qth power of the laser
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FIG. 1. (a) Calculated number of photons for b=4 mm,
L= 1 mm. (b) Experimental number of photons for the same
conditions (Ref. 10). The intensities are from the top to the
bottom 3&&10" (solid line), 1.3x10" (dashed line), 0.9x10"
(dot-dashed line), 0.7x10" (dotted line), and 0.5&& 10" (dou-
ble-dot-dashed line) Wcm
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erally within the experimental error bars, estimated to be
about 1 order of magnitude. The general shape of the
harmonic spectrum as a function of the peak laser inten-
sity is very well reproduced by our calculation.

To separate the role of propagation from the single-
atom response, we define a phase-matching factor Pq by
analogy with the weak-field limit as
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FIG. 2.. 2. Phase-matching factor P as a
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el 5th, 13th, and 21st harmonics. This will be true as
long as the different harmonic components of the dipole
moment have approximately the same (low) intensity
dependence. Therefore, the efticient phase matching ob-
tained in the strong-field regime is a direct consequence
of the weaker damping of the phase-matching integral
which follows from the weaker intensity dependence of
the single-atom emission at the harmonic frequencies.
This is purely an amplitude rather than a phase effect.

Future experiments should be able to offer further evi-
dence of the qualitative difference between the strong-
and weak-field regimes. The larger volume within which
the higher harmonics are produced leads to a loss of spa-
tial coherence. Therefore, the far-field harmonic intensi-

ty profile (which has so far not been measured) becomes
narrower as the pump intensity increases. It is approxi-
mately Gaussian in a loosely focused geometry (b»L),
but can exhibit rings in a tightly focused geometry
(b (L). From Fig. 3 we also see that even under condi-
tions that result in large positive or negative phase
mismatches, such as higher pressure or the presence of
many free electrons, the harmonic conversion efticiency
will still be high, again in contrast to one's expectation
based upon the weak-field limit.

In summary, extending harmonic generation into the
strong-field regime has two unexpected and fortunate
consequences: A plateau forms in the single-atom re-
sponse, meaning that generation of, say, the 17th har-
monic becomes as probable as the generation of the 5th
harmonic; and all the generated harmonics become
equally and efficiently phase matched.
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