
VOLUME 66, NUMBER 16 PHYSICAL REVIEW LETTERS 22 APRIL 1991

First Return, Transient Chaos, and Decay in
Chaotic Systems

In a recent Letter, ' Bauer and Bertsch examined the
dependence of decay laws on chaoticity. They studied
the capture of point particles, bouncing elastically oA' the
walls of a Sinai billiard, by a trap in one of the container
walls. For ergodic motion, they find an exponential de-
cay in time of the number of initial particles which
remain in the billiard, whereas the nonchaotic system de-
cays according to a power law.

In this Comment, (1) we point out that this problem is

very general and has been considered previously in vari-
ous contexts such as room acoustics, transient cha-
os, and coarse-grained properties of classical orbits
(first passage within a finite interval). ' (2) It is shown
that the proposed classification' is not followed by the
integrable circular billiard whose decay law is also ex-
ponential. (3) For chaotic motion, the exponential de-
cay law is shown to hold only for very small escape
rates, ' due to finite time correlations.

(1) Almost a century ago, Sabine studied the decay
of sound in concert halls due to the inAuence of absorp-
tion. It is in fact equivalent to the escape problem of
Ref. 1 within geometrical acoustics. The width h, of the
window for escape must then be identified with fds a(s),
where tt(s) is the absorption coefficient at position s of
the container perimeter. In the case of Ref. 1, a(s) =1
over the width 6 of the window and 0 elsewhere. Then,
formula (6) of Ref. 1 for the decay time, z=trA, /pA, is

nothing but the classic expression of the decay time for
an acoustic impulse in an auditorium. z is also the
mean free time of a particle within an ergodic box of
volume V and absorbing surface S (z=4V/cS), derived
more than a century ago by Czuber and Clausius. '

Opening a window to allow the escape of particles was
also proposed recently as a means to connect the
dynamical properties of billiards (internal problem) to
the (external) problem of chaotic scattering. The win-

dow can be used as the entrance to the billiard for parti-
cles coming from outside and the gate of exit from the
billiard at their first return to the window. The decay
time z is nothing but the average dwell time of the tran-
sient chaotic scattering process.

(2) We have recently studied the integrable circular
billiard and found numerically that its decay law is also
exponential, for su%ciently small window widths 3,, with
a decay time z —5, ', up to times of the order of h,

A particle trajectory can be parametrized by the posi-
tions a„of its rebounds on the circle and is equivalent to
the iteration of the circle map a„+ ~

=a„+Q, where A is
determined from the initial position and momentum of
the particle. Then, the exponential decay law can be

tracked back to ergodic properties of the irrational num-
ber 0/2tr.

(3) We have shown that, in the case of the stadi-
um, '' the decay is more complicated than a pure ex-
ponential when 4 becomes larger than 0.3 times the ra-
dius R of the circular caps. This stems from the ex-
istence of finite-time correlations, present when the aver-
age trajectory length is not large. This eAect is strong
when all particles start at time zero from a single source,
as we have studied. ' In contrast, in Ref. 1, the 10 par-
ticles have their initial positions and momenta (orienta-
tions) randomly sampled in phase space. We have car-
ried out a similar simulation for the stadium and ob-
serve that the decay law departs from a pure exponential
for values of A at least twice as large (5 ~ 0.6R). In this
case, the maximum acceptable value of h, is larger than
previously, but must still be su%ciently small so that the
escape of a single particle truly corresponds to a Marko-
vian process.
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