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Spatial Organization in the Two-Species Annihilation Reaction A +B = 0
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New features of the domain structure in the two-species annihilation reaction, 3+8 0, are report-
ed. A simple scaling argument predicts that the gaps between domains grows as tr, with s = —,

' and

respectively, in spatial dimension d= 1 and 2. The average density profile in a single domain exhibits a
power-law tail near the domain edge. This feature has surprising implications for the spatial correlations
of same-species reactants.

PACS numbers: 82.20.—w, 02.50.+s, 05.40.+j

In the diAusion-limited two-species annihilation reac-
tion, 2+8 0, it is now widely appreciated that Auc-

tuations in the initial distribution of reactants cause the
system to organize into continuously growing single-
species domains, when the spatial dimension is less than
four. ' In this Letter, we present evidence for several
new and unexpectedly rich features of this spatial organ-
ization. A new length scale is needed to describe the
"gaps" between domains, and the moments of the
nearest-neighbor distance distribution for like particles
do not obey simple scaling.

We consider an idealized model in which two species,
A and 8, are initially distributed at random on a d-
dimensional lattice. Reactants are allowed to hop to a
randomly chosen nearest-neighbor site. If an attempted
move is to a site occupied by a particle of the opposite
species, then both particles are removed from the system,
while if the move attempt is to a site occupied by a parti-
cle of the same species, then the move is rejected. This
exclusion introduces correlations which become negligi-
ble in the limit of large times and low concentrations.
After each move attempt, the time is incremented by the
inverse of the number of particles.

For this model, it is well known' ' that the concen-
tration of particles c(t) is proportional to t t for
d ~4. This decay can be understood by noting that
after a time t, all the c(0)l particles within a region of
linear dimension l —Jt have had a chance to interact.
Consequently, the number of particles remaining within
this region will be equal to the initial fluctuations in par-
ticle number, a quantity which is of order [c(0)l"]'t .
Therefore,

c(t) ee [c(0)l ] ' /l cr- t

Concomitantly, an initially homogeneous system "coars-
ens" into alternating A-rich and 8-rich domains' ' of
linear dimension proportional to t', while the typical
interparticle spacing grows as c(t) 't —t 't (Fig. 1).
This simple picture does not fully account for many in-
teresting aspects of the spatial structure, however. As
we shall show, the gaps between domains grow at a rate
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FIG. 1. Spatial distribution of reactants in one dimension il-

lustrating the typical distance between neighboring particles of
the same species, lg~, the gap length (or nearest-neighbor dis-
tance between unlike species), l~e, and the domain diameter,
2L.

intermediate to the typical interparticle spacing and the
domain size. Within a single domain, the density profile
has a nontrivial spatial variation in which the concentra-
tion vanishes in a power-law fashion as the domain
boundary is approached. This results in the positive-
integer moments of the distribution of nearest-neighbor
distances between like particles being dominated by the
large spacings in the periphery of the domain, while
fractional-order moments are controlled by the more
closely spaced particles in the domain core.

To appreciate these features, we first determine the
scaling of the interdomain gap size by giving an alterna-
tive derivation for the known one-dimensional decay law
in terms of the gap size. We postulate that the gaps are
of (unknown) length l~tt —t, so that in a time interval
At ~i&a there will typically be a reaction in each gap.
This leads to a change in concentration which is propor-
tional to the inverse domain size. Hence

AC dC —)/2 —pg

At dt

Thus in order for c(t) to be proportional to t 't, it is

necessary that g= —', . Our numerical simulations yield
estimates for g which are within 0.01 of this theoretical
prediction.

This result can also be obtained by examining the den-

sity profile within a domain, an approach which also
yields the scaling behavior for the moments of the
nearest-neighbor distance distribution of like particles,
(l~tt). For obtaining this profile, we rescale each domain
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so that they all have the same length. Particles are
placed at the closest integer point to the rescaled posi-
tion, a prescription which introduces small truncation er-
rors at early times. This rescaling is convenient, as it
leads to a unique absorbing boundary condition for all
domains. The particle densities of all the domains are
superposed and the ordinate is then multiplied by a fac-
tor of t '~ in order to scale the data in one dimension
[Fig. 2(a)]. As a function of the scaled abscissa, the
scaled profile resembles a half-sine wave.

This shape can be understood in terms of a crude mod-
el in which the particles inside an 2 domain (for exam-
ple) are diA'using independently within the region defined
by the enclosing 8 domains whose edges are also viewed
as moving diffusively. In a continuum approach, the
concentration of A's thus obeys the diffusion equation

t)c
6t

8 c
t)x

(3)

subject to the boundary conditions c(+ L(t), t) =0, with
the domain radius L(t) increasing as Jt. In the adiabat-
ic approximation, ' we thereby find

c(x, t) =cos[trx/2L(t)]exp constx„~ dt'/L(t'), (4)

in qualitative agreement with the shape of the distribu-
tion. We see that the concentration profile is the same as
the case where the walls are stationary, and only the ex-
ponent of the power-law decay rate depends on the wall
motion. This adiabatic approximation cannot be extend-
ed to the degree of accuracy necessary to find the ex-
ponent, however, due to the crudeness of our single-do-
main model.

For determining properties of the distribution of near-

est-neighbor distances between same-species particles,
the following aspects of the density profile are crucial.
First, the density decays 1inearly to zero as the domain
boundary is approached (Fig. 2). Second, the density
profile can be roughly divided into a spatially uniform
core and the linearly varying interfacial layer, with each
region comprising a finite fraction of the domain length.
From these observations, we postulate the following form
for the scaled domain profile [Fig. 2(b)]:

po, IzI ~ z*,

,pp(l —Iz I) z*& Iz I
& I —lAB/L(t).

p(z) =c(x—, t)t 't'=

(5)

Here po and z* are constants, with z* less than unity,
and z is the scaled spatial coordinate, defined by z =x/
L(t). The upper limit for IzI on the second line of Eq.
(5) refiects the fact that there are no particles within a
scaled distance of l~tt/L (t) t '—from the domain
edge.

In terms of this trapezoidal profile, we can now give an
alternative argument for the time dependence of the typ-
ical gap size Izz. This distance is defined by the condi-
tion

r
—I (f)+I»

c(x,t)dx = I, (6)~ —L(t)

which merely states that of the order of one particle is
within the gap. Using c(x, t) —(L+x)/t t appropriate
for x close to —L(t) [cf. Eq. (5)], the result l~tt —t
immediately follows.

We can also determine the time dependence of the
moments of the distance distribution between adjacent
same-species particles, (l~~). According to the trape-
zoidal form, the reduced moments, M„—:(l~~) ' ", are
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Here E —=l~g/L(t) ee t ' is the aforementioned cutoff
that specifies the location of the outermost particle in the
domain in scaled units. Performing this integral yields
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FIG. 2. (a) The scaled domain profile based on 64 real-
izations of a chain of 500000 sites with c~ (0) =ca(0)
=0.4. Shown are data for t =194 (0), t =1477 (&), and t
=11 222 ('7). This plot suggests the trapezoidal profile (b).

Thus, as a consequence of the interfacial region, there is
a logarithmic factor in the ratio between the average and
typical distance between nearest-neighbor particles of
the same species, and a power-law diverging factor for
the higher moments. As n ~, the reduced moment is
dominated by the sparsely populated region near the
periphery of the domain where nearest-neighbor particles
are separated by a distance that grows as t

These findings are corroborated by simulations. For
various n & 1, double-logarithmic plots of M„vs t yield
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straight lines of diA'erent slopes with exponent values
that are in good agreement with Eq. (8). For n & 1, the
M„appear to approach a common limit, asymptotically,
as we also expect. The slopes of the straight lines that
pass through successive pairs of data points roughly ex-
trapolate to exponent values of 0.26-0.27. Finally, for
n =1, the successive slopes are systematically increasing
with time and extrapolate to an exponent value of about
0.29. The gradual increase of the exponent is not in ac-
cord with a logarithmic correction, although the value of
the apparent exponent is in the range that is expected
when a quantity which varies as t '~ lnt is fitted with a
simple power law. We do not fully understand the
source of these various small discrepancies with Eq. (8).

We now determine the distribution of distances be-
tween neighboring same-species particles from the do-
main profile. Under the assumption that particles are
distributed approximately at random according to the
local density c(x, t), then the probability of finding a
nearest-neighbor distance between particles of the same
species equal to s at spatial location x is

Pgg(s, x, t) =c(x,t)e

The average probability of finding a spacing equal to s is
obtained by integrating over a domain and dividing its
length. In terms of the scaled coordinate z~x/t't and
the scaled density p(z) ee c(x, t) t ', this integral is

P„~(s,t) ~t ' ' dz p(z)e~0
Introducing the scaled spacing a= s/t 't, a—saddle-point
integration yields, for p(z) vanishing linearly in z near
the domain edge,

Pgg (a) Ix: F(a)exp( —const x crt 't ),
with F(a) ee0(a ) as a 0o. From this form, it is
also possible to obtain the moments M„already derived
in Eq. (8). We expect to observe the power-law form for
F(a) at a length scale intermediate to the typical and
largest interparticle spacing, a range which unfortunate-
ly grows only as t '~ . Thus the largest time in our one-
dimensional simulation, t =11222, does not appear to be
long enough to yieM good numerical evidence for this
power law; however, the data clearly exhibit the asymp-
totic exponential decay (Fig. 3).

The above presentation can be extended to higher di-
mensions. In analogy with the one-dimensional case, we
hypothesize that a domain in d dimensions has a core re-
gion of approximately constant density and a surround-
ing (d —1)-dimensional "skin" where the density van-
ishes as the domain edge is approached. Numerical
simulations on a 1000x1000 square reveal a profile, ob-
tained by superposing the one-dimensional profiles on
each line of the square, which is qualitatively similar to
the one-dimensional case, except for a more abrupt de-
pletion at the domain edge.

To estimate the gap distance l~~, we now assume that
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FIG. 3. Semilogarithmic plot of the smoothed distribution
of nearest-neighbor distances for same-species particles
Pgg(s, t) at t =11222. The slope of the best-fit straight line
that fits the asymptotic decay (dashed and offset) vanishes as—3/8

all the particles at the edge of the depletion zone are
separated by a distance which scales as l~~, leading to
the number of boundary particles scaling as (t 't /
l~tt) '. Then in a time interval which is proportional
to lzz, each of these boundary particles reacts, for d ~ 2,
leading to a density change Ac —(t't /l~tt) '/t"t . In
analogy with Eq. (2), we find

dc/dt t
—'t l~

—1+ ) (12)
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Matching the resulting solution with the known decay
of c(t) —t t for d(4 yields g=(d+2)/4(d+I).
Simulations in two dimensions give a value for g which is
close to the predicted value of —,'. We expect that this
dimension dependence for g holds in the range 1 (d(2. However, for d ) 2, not every particle on the do-
main boundary reacts within any specified time interval,
and we expect qualitatively diA'erent behavior, with a
negligible depletion zone at the domain periphery.

In summary, the gap between domains is a new length
scale, intermediate to the interparticle spacing and the
domain size, in diftusion-limited two-species annihila-
tion, A +8 0. The depletion of particles near the
domain edge accounts for the multiscaling properties of
the moments of the nearest-neighbor distance distribu-
tion for same-species particles, and also a more complete
account for the spatial distribution of reactants in the
system.
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