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Experimental Observation of Landau Levels in Nonperiodic (Fibonacci) Superlattices
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Absorption spectra of GaAs/GaA1As Fibonacci superlattices (FSL) with magnetic fields parallel to
the layers show self-similarity at field values scaled by r [r=(1+JS)/2]. The one-dimensional non-

periodicity of the FSL aA'ects the carrier motion perpendicular to the layers very differently from that
parallel to the layers: In Bll, where carriers have to cross several barriers to complete a cyclotron orbit,
clear Landau levels are observed, whereas in B~ the merging of the magnetic levels superimposed on the
irregular eigenvalue spectrum of the FSL does not yield equally spaced spectra.

PACS numbers: 71.55.Jv, 73.20.Dx, 78.20.Ls

Systems with nonperiodic quasi-one-dimensional (1D)
potentials, such as Fibonacci superlattices (FSL), are ac-
cessible analogs of noncrystalline solids, which over the
years have become a subject of increasing importance. '

FSL are artificially grown layered structures with vary-
ing layer thickness or composition. These purposely
disordered quasi-10 systems, besides providing a "con-
trollable" kind of nonperiodicity, are self-similar, mean-
ing that their properties are similar at diAerent length
scales. Experiments probing directly the geometry of the
FSL, e.g. , x-ray diA'raction or Raman scattering by
acoustic phonons, have brought out this self-similarity.
Moreover, the electronic states of nonperiodic SL, and in

particular FSL, have been investigated theoretically
and experimentally ' at zero magnetic field, showing
the existence of regions of localized states and delocal-
ized states.

In this paper we study the CAects of nonperiodicity
and self-similarity on the energy-level structure when a
magnetic field is applied parallel to the layers. In this
field configuration, carriers move in cyclotron orbits of
radius (It/eB) '/ in the direction of variation of the non-

periodic potential. Therefore, a magnetic field can be
considered as a tool to study vertical motion in non-
periodic SL, and the length scale on which the carriers
"see" the nonperiodicity can be varied by the field. A
condition for the observation of such CAects is that the
barriers are thin and low enough in order to allow an
efFicient tunneling of the carriers through the barriers;
i.e., we consider a weakly disordered system.

It has been shown theoretically'' that, because of the
same scaling behavior of the Schrodinger equation of
motion of carriers in a magnetic field and of the Fi-
lionacci poteiltlal, tile density of states (DOS) of a FSL
as a function of a field parallel to the layers may be self-
similaI at dlAercnt fiicld values, and herc wc demonstrate
the cFect experimentally. This type of property is entire-
ly new, and diAcrcnt from the previously studied sys-

abb b', ab a',

ab b", b a" .

(la)

Equation (la) transforms w„ into w„2 corresponding to
a scaling of the length in structure by a factor r (see
Wang and Maan''); (lb) transforms w„ into the reverse
of w„—

~
(i.e., w„—

~
read from left to right), and the scal-

tems, ' ' since it is independent of the exact geometry
of the structure and it is brought about by the variation
of an external parameter.

We report measurements of the luminescence intensity
of the near-band-edge emission as a function of the exci-
tation energy (luminescence excitation spectroscopy), in
magnetic fields both parallel and perpendicular to the
FSL layers, and compare the results with similar experi-
ments in periodic superlattices (PSL). We have verified
that the shape of the excitation spectra taken at diAercnt
positions in the luminescence line was the same and that
the measurements reAect the shape of the DOS. The ex-
citing radiation, with wavelengths between 700 and 800
nm, was generated by a Kr+-pumped CR599 dye laser
using LD700 as a dye. The experiments were performed
at 1.8 K and in fields up to 22 T produced by a 10-MW
polyhelix magnet.

The two investigated FSL consisted of molecular-
beam-epitaxy-grown sequences w„of the elementary
layers a (1.12-nm Al„Ga~ — As barrier, with x =0.2 for
one and 0.4 for the other sample) and b (1.69-nm GaAs
well) generated according to the Fibonacci series in the
following way. Let w„be the concatenation of w„2 and
w„—~ if n is odd, and w„—~ and w„—q if n is even. Start-
ing with wi =a and w2=b, we find subsequently w3=ab,
w4=abb, w5 =abash, w6=ababbabb, etc. For increas-
ing n, the ratio of the lengths of w„and w, —

1 approaches
r =(1+&5)/2, the golden mean. The self-similarity of
the resulting nonperiodic structure follows from the
transform ations
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ing factor becomes i.
The FSL studied were of generation iv i 3 (233 layers a

and b). For comparison, we also measured a 3.5-nm/
l. l-nm and a 3.8-nm/I. l-nm GaAs/Alo4Gao6As period-
ic SL.

In Figs. 1(a) and 1(b) we show the luminescence exci-
tation spectra of a FSL in magnetic fields parallel (Bi)
and perpendicular (B&) to the SL layers and in Figs.
1(c) and 1(d) the analogous results for the PSL. The
first striking feature is the much stronger anisotropy be-
tween the 8~[ and 8& spectra of the FSL compared to
that of the PSL. While in the PSL in both field con-
figurations, clearly equidistant, linearly field-dependent
transitions (Landau levels) can be distinguished, such
transitions can only be identified in the 8~~ spectra of the
FSL and not in the 8~ spectra. This latter result would
a priori not be expected, since in 8~~ the carriers have to
tunnel through a nonperiodic array of barriers, while

they can complete their cyclotron orbit within each
GaAs well in 8&. A further important diA'erence be-
tween PSL and FSL is that with B~~ [Figs. 1(a) and 1(c)]
in the PSL the Landau levels become more pronounced,
in a regular fashion, as the field increases, awhile the in-

tensity of the peaks in the FSL varies irregularly with in-

creasing field strength. Moreover, the width of the levels
in the PSL is seen to be independent of the magnetic
field [see inset of Fig. 1(c)], whereas the levels in the
FSL clearly broaden with field [see inset of Fig. 1(a)].

These results are a direct consequence of the shape of
the DOS of a system with a 1D potential in a magnetic
field. When the field is perpendicular to the SL layers,
the carriers orbit in the plane of the layers, and the ener-

gy spectrum consists of Landau-level fans originating
from each of the eigenvalues of the confining 1D poten-

tial. Contrary to the PSL, the eigenvalues of the FSL
are grouped at irregularly spaced bunches and the result-
ing level structure does not resemble a simple Landau-
level fan. In particular, Landau levels with higher
Landau-level indices of lower eigen values merge at
higher fields with those with lower indices of higher ei-
genvalues, and thus the resulting DOS shows no indivi-
dual levels. For instance, the peak visible in the 8&
spectrum at 20 T is the result of such a convolution. In
the parallel field instead, the carriers move in the direc-
tion of the Fibonacci potential on a length scale which
can be varied with the field. The energy spectrum in this
case results from the Schrodinger equation describing
the carrier motion in the FSL growth direction (z) in a
magnetic field parallel to the layers (e.g. , the x direc-
tion). When we express all lengths in units of the cyclo-
tron radius l and all energies and potentials in units of
hra, = A, eB/m*, the Schrodinger equation reads

d +(g —go)'+ vs'(() y(g —&o)
d(g —go)

'

=Ey(( go), (2)—

where l(o =Akim/eB (the position of the "center" of the
cyclotron orbit in the growth direction). The wave func-
tions in the x and y directions are plane waves with wave
vectors k and k~, respectively.

In the absence of a potential vsL, Eq. (2) is the well-

known harmonic-oscillator equation with degenerate ei-
genvalues EJv =N+ —,

' (N is the Landau-level quantum
number) for all orbit centers (o. In the presence of
vsL((), Eq. (2) leads in general to a (o-dependent disper-
sion. When db.,„(A/(2mVo)' (di,„and Vo are the
width and the height of the barrier) and when the aver-
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FIG. f. Luminescence excitation spectra at different values of the magnetic field of the Fibonacci SL with 20%-Al barriers (a) in

a field parallel to the layers and (b) in a perpendicular field; and of periodic SL (c) in a parallel field (3.8-nm-GaAs/1. 1-nm-

A104Gao6As) and (d) in a perpendicular field (3.5-nm-GaAs/l. l-nm-A104Gao6As). (a), (c) insets: The width of magnetic levels as a
function of parallel field in, respectively, the Fibonacci and the periodic SL.
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age periodicity of the potential is small compared to
[(2N + 1 )/(N+ 1)] '~ I (the "period" of P~ ), vsL(g) can
be considered as a perturbation and alters only slightly
the unperturbed harmonic-oscillator wave functions p~.
In first-order perturbation the eigenvalues of Eq. (2) can
then be written as

=(N+ —, )+(vsi (go)) . (3)

In this approximation for a periodic potential, (vsL) is in-
dependent of the origin of the cyclotron orbit go, and of
the extent of the wave function pjv. The width of the
Landau levels in periodic SL is thus independent of the
magnetic field as was confirmed experimentally' ' and
as can also be seen in Fig. 1(c).

In the case of a Fibonacci potential it has been
shown'' that the dispersion (vsL(go)), and therefore also
the DOS, is self-similar for values of the magnetic field
related by r " (n =. . . —2, —1,0, 1,2, . . . ), provided that
all energies are measured in units of the cyclotron ener-
gy. This result was obtained on the basis of an exact
solution of (2), but can more easily be understood in
terms of the perturbation approach (3). At a given field,
Eq. (3) calculated for all values of go with respect to the
Fibonacci potential gives the orbit-center dispersion and

the shape of the DOS at that field. At a ~ -times-lower
magnetic field, i.e., a r -longer magnetic length, (3) can
be evaluated for the actual potential, but also for a suit-
ably averaged potential, both yielding the same orbit-
center dispersion. In this average, a barrier followed by
a wide well (abb) is replaced by a new well b' with a
width equal to abb and a potential equal to the average
over abb, and similarly the actual ab is replaced by a
new barrier a' with a width like ab and a potential equal
to the average over ab. This suitable averaging corre-
sponds to the transformation (la) for which the Fibonac-
ci sequence is self-similar and implies a scaling in the
length by r . Decreasing the field by a factor of r thus
merely corresponds to a scaling of both the magnetic
length and the length scale of the potential with i . As a
consequence, the DOS of a FSL in a parallel field is the
same at fields related by a factor r . '' Scaling with r in
length and r in field using transformation (lb) is simi-
lar but the argument is somewhat more complicated. ''

To demonstrate this self-similarity in the spectra at
diA'erent parallel magnetic fields we calculate Z(Bo,B),
the sum of the squares of the diA'erences between a spec-
trum at a given field Bo and spectra at other values of
the magnetic field (with the energy scale normalized to
the cyclotron energy), scaled in a way as to allow for
comparison between diff'erent samples and field geom-
etries:

I,(E)
(Iii)

dE t + dE
Ia, (E) Iii E
(Iii,) (Iii)

where Iii(E) is the luminescence intensity at excitation
energy F. normalized to the cyclotron energy and at a
field 8, and (Iii) is the average intensity of the spectrum.
The closer Z(Bo,B) is to zero, the more similar the spec-
tra at Bo and B are. For instance, for a simple Landau-
level spectrum with equidistant peaks of the same shape,
(4) would give zero for all fields. In Fig. 2(b), we show
Z(Bo,B) for both FSL in Bi and compare with similar
results for the PSL [Fig 2(a)].. For the FSL a clear
minimum at a value of the magnetic field for which
8/Bo =0.43 + 0.04 is observed, while for the PSL
Z(Bo,B) increases smoothly. In 8~, for the PSL,
Z(Bo,B) behaves similarly, but in this configuration the
FSL shows a very rapid increase for lower values of
8/Bo [Fig. 2(c)], demonstrating that the spectra do not
resemble each other. Since only Z(Bo, B) for FSL in B~~

shows a minimum at a value 0.43+ 0.04 and since this
value is very close to the expected self-similarity ratio,
1/r =0.38, we can conclude that the Bi spectra of the
FSL show indeed the predicted self-similar behavior. An
implication of this self-similarity is that the width of the
peaks increases linearly with the field as we have indeed
observed (Fig. 1).

In this analysis we considered the shape of the spectra
only in terms of the broadening due to the nonperiodic
potential, but, of course, several other aspects like the

field-independent intrinsic broadening of the peaks due
to scattering, the nonparabolicity of the conduction
band, the valence-band structure, and excitonic effects
also contribute partially to the shape of the peaks. In
particular, the finite broadening of the peaks which
makes structure only become clearly visible at 6 T makes
the spectra between high and low fields begin to be dis-
similar, as can be seen from the fact that also X(Bo,B) of
the PSL in B

~~
shows a decrease. We attribute the

diff'erence between the observed value of 0.43 and the
theoretically expected value of 0.38 (1/r ) and the fact
that Z(Bo,B) does not rech zero at this value to these

effects.

It is important to stress that this self-similarity does
not simply reflect any particular ratio between the mag-
netic length at some field with the layer thicknesses in-
volved. Instead, for any field Bo one can find other field
values (r Bo, Bo/r, Bo/r, etc.) which will show in prin-
ciple self-similar spectra, which implies that the spectra
are not fractal in the sense that one observes a spectrum
in a spectrum, etc. , as was the case with the other experi-
ments. ' Another new phenomenon is that the self-
similarity is a consequence of the variation of an external
parameter.

In summary, we have shown that luminescence excita-
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consequence of the identical scaling behavior of the mag-
netic Hamiltonian and the Fibonacci potential.

We thank H. Krath for his excellent technical assis-
tance and P. Wyder for his interest in this work.
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tion spectra of nonperiodic FSL in magnetic fields per-
pendicular and parallel to the SL layers are strongly an-
isotropic. The parallel-field spectra of the nonperiodic
SL show clear Landau levels, which, in contrast to those
in periodic SL, broaden as a function of field, vary non-
uniformly in intensity, and show a self-similar behavior
as a function of the parallel magnetic field. This is a

F1G. 2. Similarity X(Bp,B) of the spectrum, normalized to
the cyclotron energy, at a field Bo, with the normalized spectra
at other values of the magnetic field: (a) for a 3.5-nm-GaAsl
l. 1-nm-A104Ga06As periodic SL in parallel and perpendicular
fields, with Bp =18 T; (b) for the Fibonacci SL (Fib. 1, 20%-Al
barriers, and Fib. 2, 40%-Al barriers) in parallel fields, with

Bp =22 T; and (c) for a Fibonacci SL (Fib. 1) in a perpendicu-
lar field, with Bp =22 T (note the scale change). The lines are
a guide to the eye.
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