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Structure and Thermodynamics of Si Get — Alloys from Ab Initio Monte Carlo Simulations

Stefano de Gironcoli and Paolo Giannozzi
Institut Rornand de Recherche Numerique en Physique des Materiaux (IRRMA), PHB Ecu-biens,

CH-I Ol 5, Lausanne, Switzerland

Stefano Baroni
Scuola Internazionale Superiore di Studi Avanzati (SISSA), Strada Costiera I I, I 340I-4 TriesteIta, ly

(Received 20 November 1990)

Si,Ge] —,alloys are studied with a new method based on density-functional theory and Monte Carlo
sampling. Using perturbation theory with respect to the virtual crystal, we are able to map the alloy
onto a lattice gas with long-range interactions, which are determined from first principles. Monte Carlo
simulations show that Si Gel —,- is a model random alloy with a miscibility gap below =170 K. The
bond-length distribution displays three well-defined peaks whose positions depend on composition, but
not on temperature. The resulting lattice parameter follows Vegard's law very closely.

PACS numbers: 61.55.Hg, 64.75.+g, 71.10.+x

One of the standard ways of studying finite-tem-
perature properties of solid solutions is to map the alloy
problem onto a lattice-gas (or Ising) model, whose cou-
pling constants are usually fitted to some empirically
known structural or thermodynamic properties. ' This
approach has received a sound theoretical basis in the
"renormalized interactions method" (RIM). In RIM
interatomic interactions are fitted to the results of first-
principles density-functional-theory (DFT) calculations
for some ordered structures which can be described by
small supercells, and the resulting statistical-mechanical
problem is treated by the cluster-variation method.

In this paper we follow a different but related ap-
proach by pursuing an idea previously applied to the
electronic structure of semiconductor heterojunctions.
The alloy is considered as a perturbation with respect to
a periodic virtual crystal, and treated using linear-
response theory (LRT). This allows us to map the prob-
lem onto a lattice-gas model with only two-body interac-
tions, the mapping being exact up to second order in the
perturbation. For the sake of clarity, we focus on Si-
Ge~ —„, the generalization to other semiconductor alloys
being straightforward.

The thermodynamics of the alloy is determined by the
relative energy of diAerent microscopic configurations.
Each of them can be described by a set of Ising-like vari-
ables jtTttj, where [Rj are the equilibrium lattice posi-
tions of the diamond lattice, and aR =+1 if the ion sit-
ting at R is Si, and o.R= —1 if it is Ge. The formation
of the alloy in a given configuration [ottj at molar
volume 0 can be conveniently split into three steps: (i)
First, the proper amounts of pure silicon and germanium
are brought from their equilibrium volumes —Qs; and

Q~,—to the desired final volume —A —paying an elas-
tic energy

AE, j,,t(x, 0) = x[Es;(n) —Es;(ns;)]

where x = —,
' ((tr)+ I ) is the Si concentration. This step

is independent of the microscopic configuration, and the
elastic energy is easily obtained from bulk equations of
state. (ii) The alloy is then formed by placing ions at the
idea/ positions of a diamond lattice with molar volume
0, according to the prescribed distribution [craj. This
step costs a chemical energy

&E,h.~([traj, &) = E([trttj, ideal, &)

(iii) Finally, the atoms are allowed to relax to their equi-
librium positions, thus gaining a relaxation energy

AE«j,„=E([tTttj,[uaj., tt ) E([oRj,ideal, 0—), (3)

where uR is the ionic displacement of the atom sitting at
R, due to lattice relaxation. The formation energy of the
alloy in a given configuration is the sum of these three
contributions. The last two depend on the microscopic
arrangement of atoms, and they are therefore the
dificult part of the calculation.

Owing to the small chemical differences between Si
and Ge atoms, an actual configuration of Si Ge~ —,can
be conveniently described as a perturbation with respect
to a periodic virtual crystal (SiGe), whose ionic pseudo-
potential is the average between those of pure Si and Ge:

«s o.&(r) =X v (r —R),

where v(r) = —,
' [vsj(f)+vG, (r)], and vsj and vG, are the

ionic pseudopotentials of Si and Ge. In the same spirit,
displacements from ideal positions are treated by pertur-
bation theory. For any microscopic configuration [crttj
and displacement pattern [uRj, the bare perturbing po-
tential is

AV(r) =gattav(r —R)+putt " (r —R),
R R BR

where dv(r) = —,
' [vs;(r) —vo, (r)]. The equilibrium val-

ues of [uRj are to leading order linear in hv, and higher-
order terms are neglected. Up to second order in the
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perturbation, the energy of the alloy is then given by

E(faRI, [uRI, Q) =E&s;o,&+„AV(r)n&s;o,&(r)dr+ —,
'

&
AV(r)Any(r)dr+8(Av ),

where E&s;o,&
and n&s;o, &(r) are the energy and electron density distributions of the virtual crystal —calculated at

volume 0—and hn& is the electron charge density linearly induced by AV. Using linearity and translational invariance,

Eq. (4) can be rewritten as

E(!aR~ !uR~ f) ) E&siGC&+l~zlaR+ 2 Xf J(R R )aRaR'
R R, R'

+ 2 g uR &(R —R') uit —g aRF(R —R') uR+6(AV ),
R,R' R,R'

where K= /At (r)n(r)dr is a constant which does not contribute to the formation energy,

J(R —R')—:„At (r —R)An, (r —
R, ')dr,

(4)

(5)

An, , is the electron charge linearly induced by h, v,

t) VF(R —R')—:—
J An, (r —R, ),(r —R')dr

t)R'
is the force linearly induced on the virtual ion at site R by the perturbation Av(r —R) located at R, and @(R —R ) is

the matrix of the vibrational interatomic force constants of the virtual crystal. Ion displacements are not independent
variables: For any given ionic configuration fcrR], their equilibrium values are those which minimize the quadratic
form, Eq. (5). The minimum defines the configurational energy of the alloy, which is the sum of the chemical plus re-
laxation contributions to the formation energy, Eqs. (2) and (3):

1 N
AEco„ys =—AE~he~ +AE ~ei~„=—g J(R R') O'Ra'it' g J(R), (6)

R, R' R

where

J(R —R') =J(R —R') —g F(R —R") &I& '(R"
Rll Rill

are renormalized interaction constants, and N is the
number of atoms in the alloy. Equation (6) clearly
displays the isomorphism between the alloy problem and

a lattice gas with two-body —generally long-range
—interactions, when third- and higher-order terms in

perturbation theory are disregarded. In the following,
we show that —for Si Ge~ —„—the second-order expan-
sion given by Eq. (6) provides a very accurate descrip-
tion of the relevant energy diA'erences.

All the necessary quantities —J, F, and %—can be
efticiently calculated using the Green's-function LRT
method of Ref. 5, along lines similar to those exposed in

Ref. 4(b). Calculations have been performed using
norm-conserving pseudopotentials, basis sets of plane
waves up to a kinetic-energy cutofI of 12 Ry, and six spe-
cial points for Brillouin-zone integrations. Real-space
interactions have been calculated using reciprocal-space
and Fourier-transform techniques, as explained in Ref.
4(b), and exploiting crystal symmetry to reduce the
number of independent interactions. Our reciprocal-
space grid is such that it allows the calculation of J, F,
and @ in real space up to the 22nd complete shell of
neighbors. Other technical details are the same as in

Ref. 4(b).
In Table I we compare the chemical and relaxation

contributions to the formation energies of several or-
dered structures of Si Ge~ —,as obtained by the present
approach and by accurate DFT self-consistent-field
(SCF) calculations. Inspection of the table shows that
the typical accuracy achievable by the present approach

—R"') F(R' —R'")

TABLE I. Comparison between the configurational energies

[Eq. (6)] of several superlattice structures, calculated by

linear-response theory (LRT) and full self-consistent-field

(SCF) calculation, both neglecting (unrelaxed) and including

(relaxed) lattice relaxation (in meV/atom). The n+m nota-

tion indicates n Si and m Ge layers; ZB stands for zinc blende.

For [111] superlattices, the RH1 and RH2 labels refer to Si-
Ge-Ge-Si and Si-Si-Ge-Ge stacking, respectively. All calcu-

lations are performed at the lattice constant given by Vegard's

law for x= 2.

Structure
U n relaxed

LRT SCF
Relaxed

LRT SCF

ZB

[001],+2

[001],+i

[001]1+3

[001]s+ 3

[1 1 1]]'l2

[111]PY
[1 1 l]3+3

[110]2+&

[110]3+i

[110]i+3

—6.4
—4.6
—3.9
—3.9
—3.1

—5.9
—2.5
—2.9
—2.7
—2.5
—2.5

—6.5
—4.6
—3.9
—3.9
—3.2
—5.7
—2.5
—3.0
—2.7
—2.5
—2.5

—6.4
—9.4
—6.3
—6.3
—9.2
—9.9
—6. 1

—7.6
—10.4
—7.5
—7.5

—6.5
—9.7
—6.4
—6.5
—9.5

—10.0
—6.3
—7.9

—10.7
—7.8
—7.9

!
is of the order of (often better than) 5%, thus giving
confidence in its predictive power.

In Fig. 1 we display the calculated interaction con-
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FIG. 1. Atomic interaction constants (thick vertical bars)
calculated neglecting ("unrelaxed" ) and including ("relaxed" )
lattice relaxation, as functions of the interatomic separation r.
"On-site" interactions r =0 are not reported because they
would be oA scale. Thin vertical bars on the horizontal axis in-
dicate shells of neighbors. Shells lying on the same bond chain
as the atom at the origin are indicated by a solid triangle. The
solid lines indicate the formation energy of the random alloy in
the regular-solution approximation, obtained by truncating the
interaction at a given shell of neighbors.

stants as functions of the interatomic distance, calculated
at the lattice parameter given by Vegard's law for x = —,

' .
Neglecting lattice relaxation (upper panel), the interac-
tions are quite short range, and practically vanish beyond
the third shell of neighbors. Lattice relaxation makes
the interactions propagate rather far along the bond
chains (lower panel). The solid lines indicate the value
of configurational energy of the random alloy, Eq. (6),
calculated using the regular-solution approximation and
truncating the interaction constants at different shells of
neighbors. In the unrelaxed case the convergence is very
rapid and a few interaction constants suf5ce. When re-
laxation is included the convergence is slow and drops
are observed in correspondence with shells containing
atoms belonging to the same bond chain as the atom at
the origin. This indicates that a larger number of in-
teraction constants have to be considered.

Let us compare the present approach to the RIM
method of Ref. 2. Contrary to the present approach,
RIM is not bound to systems whose chemical disorder is
weak: In fact, many-body interactions can be extracted
in a similar way as two-body ones, whereas in our ap-
proach the calculation of many-body interactions is pos-
sible in principle but not very practical. On the other
hand, the actual application of the RIM rests on the pos-
sibility of extracting interaction constants from calcula-
tions made for small supercells. If the range of the in-
teractions is larger than the size of the supercells one can
deal with, short-range interactions will be affected by the
neglect of long-range ones. We conclude that in these
cases RIM could only provide an approximate scheme
even in the limit of weak chemical disorder, whereas our
scheme (which is based on perturbation theory and is not
limited by the size of any supercell) is exact in that limit.
Assessing the importance of the differences between the
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two methods —as applied to semiconductor alloys —re-
quires in our opinion further research.

We now illustrate how the present method can be used
to calculate thermodynamic properties by Monte Carlo
(MC) simulations. We have performed constant-pres-
sure (P=O), constant-chemical-potential MC simula-
tions on a system of 1024 atoms: To this end, interaction
constants for an arbitrary volume are obtained by quad-
ratic interpolation of the values calculated for three
different volumes (near the equilibrium volumes of pure
Si, pure Ge, and Sio 5Geo 5, as given by Vegard's law).
In the top panel of Fig. 2 we display the average concen-
tration x as a function of the chemical potential p, ob-
tained for three different temperatures (above, below,
and at the critical temperature T, ). The statistical er-
rors are estimated to be smaller than the displayed cir-
cles. Above T„ the concentration is a continuous func-
tion of the chemical potential, thus indicating complete
miscibility for any concentration. As the temperature
decreases below T„a discontinuity appears which sig-
nals the opening of a miscibility gap. The free energies
of the Ge- and Si-rich phases are obtained by integra-
tion: To this end, the dependence of the chemical poten-
tial upon concentration is 6tted by the function

p(x) =kTln" 1-x + dP(x)
dx

where P(x) is a fourth-order polynomial which vanishes
at x = 1 and 0, so that the correct high- and low-

Si
X

FIG. 2. Top panel: Average Si concentration of the alloy as
a function of the chemical potential, for three diA'erent temper-
atures. The lines are obtained by a fitting procedure, as de-
scribed in the text. The dashed portion of the line at 140 K
corresponds to the instability region inside the spinoidal line.
Bottom panel: Phase diagram of SiGe alloys. Circles: Monte
Carlo predictions for the miscibility gap (solid circles) and spi-
noidal (open circles) lines. Lines: Mean-field predictions for
the same lines (solid and dashed lines, respectively).
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FIG. 3. Left panel: Bond-length distribution in Si045Ge055
alloys, measured by MC simulation at T =300 K. Right panel:
Dependence of maxima of the peaks upon Si concentration
(solid circles, the error bars indicate the width of the peaks);
dependence upon composition of the average bond length, as
obtained from the alloy lattice parameter (open circles). The
solid and dashed lines are intended as guides for the eyes. The
diamonds on the right indicate the equilibrium bond lengths of
pure Si and Ge and of zinc-blende SiGe.

concentration limits are enforced. The miscibility gap is
found corresponding to the values of the chemical poten-
tial where the two phases have the same free energy
(lower panel, solid circles), whereas the maximum and
minimum of p (x) appearing below T, correspond to the
spinodal line (lower panel, open circles). The line of the
miscibility gap and the spinodal line obtained by the
mean-field (MF) approximation are also displayed, by
the solid and dashed lines, respectively. The value of T,
estimated by MC simulation is = 170 K, whereas the
MF approximation gives 175.3 K. The two results are
quite close—although the MF approximation overesti-
mates T, as expected —as the thermodynamics of the
system is dominated by the (configuration-independent)
elastic contribution to the formation energy. Our results
are at variance with previous cluster-expansion calcula-
tions, but they agree well with recent MC simulations
employing semiernpirical interatomic potentials.

MC simulations allow us to calculate the bond-length
distribution in the alloy as a function of the molar com-
position. In Fig. 3 we display our results obtained at
T =300 K. The histogram in the left panel displays the
bond-length distribution corresponding to an average
composition x =0.45, and shows three distinct peaks
whose maxima are close to—but do not coincide with—the equilibrium bond lengths of pure Si, pure Ge, and
zinc-blende SiGe (reported on the right of the figure).
In the right panel, we summarize our results for diff'erent
concentrations. Solid circles indicate the maxima of the
peaks, error bars their widths, and open circles indicate
the average bond length, as obtained by the lattice con-
stant of the alloy. These data do not depend on tempera-
ture for any temperature above T„within our statistical
errors, and they indicate that Vegard's law is followed
very closely. Deviations of the average lattice parame-
ters from Vegard's law —as obtained for diff'erent tem-
peratures in the range of 200-400 K—are displayed on a
magnified scale in Fig. 4, along with the predictions of
the regular-solution approximation (solid line). All the
data coincide with the predictions of this approximation,

Si
X

FIG. 4. Deviations of the alloy lattice parameter from
linearity with respect to concentration (Vegard's law). All the
data taken in the temperature range between 200 and 400 K
coincide with those predicted by the regular-solution approxi-
mation, within statistical errors.

thus confirming that Si„Ge~ is a model random alloy
at all temperatures in this range and, a fortiori, at higher
temperatures. These results clearly indicate that the
mechanisms responsible for the spontaneous ordering ob-
served in epitaxially grown Si Ge~ — alloys' should not
be searched for in bulk thermodynamics. Rather, they
could be related to kinetic effects" and/or to surface
thermodynamics.
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