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Dense Two-Dimensional Classical Coulomb Gas on a Triangular Lattice
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We carry out Monte Carlo simulations of the two-dimensional neutral Coulomb gas of integer charges
on a triangular lattice, as a function of temperature and chemical potential, and find rich critical behav-
ior. We find transitions which do not seem to follow the expectations of a symmetry analysis, and
nonuniversal jumps in the inverse dielectric constant.

PACS numbers: 64.60.—i, 05.50.+q

Systems of classical, log arith mically interacting
charges have had wide application in two-dimensional
statistical mechanics and related physical systems such
as superAuid and superconducting films, Josephson-
junction arrays, 2D melting, surface roughening, and
liquid crystals. ' It is thus of general interest to study the
transitions of such 2D Coulomb systems. A question of
particular interest is whether or not one may use the
universality classes of well-known short-range interaction
models to classify the transitions of Coulomb systems
with the same symmetry. That such a program might
be successful was suggested by the fully frustrated XY
model which maps onto a neutral Coulomb gas of half-
integer charges. Here the ground state has a discrete
double degeneracy, and the model was found to have an
Ising transition.

Recently we studied the dense neutral-integer
Coulomb gas (CG) on a square lattice. This has the
same symmetry as an antiferromagnetic Blume-Emery-
Griftiths model. As expected by symmetry, the second-
order line in this Coulomb model is Ising. However, we
found that the tricritical point, where the Ising and first-
order lines meet, did not have the behavior of the usual
Ising tricritical point. In this paper we consider the
dense neutral-integer Coulomb gas on a triangular lat-
tice. Here we find clearer evidence of a transition which
does not appear to follow the critical behavior expected
from a symmetry analysis. An explicit physical example
of one of the phases we find is given by the fully frustrat-
ed Josephson-junction array on a honeycomb lattice.

The Hamiltonian we study is given by
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1V=L, at =x and a2= 2 x+ 2 J3y are the unit basis
vectors of the triangular lattice, a3 =a~ —aq, and the sum
is over all k in the first Brillouin zone (BZ), consistent
with periodic boundary conditions. The second term in

Eq. (1) controls the average charge density; the third
term stabilizes the system in the very dense limit.

A summary of our results is given by the u-T phase di-
agram shown in Fig. 1. In the insulating phase A, the
ground state is the vacuum and charges exist in bound
neutral pairs. Crossing from A to a conducting phase

there is a Kosterlitz-Thouless (KT) transition
(dashed line) determined by the vanishing of the inverse
dielectric constant e

The phase X) is described by a periodic charge struc-
ture, with complex order parameter given by the Fourier
component of the average charge density, (qk, ) =(1/
1.)&g;q;exp(iko r;)), where ko=(4tr/3)i~ is a wave vec-
tor which points to a vertex of the surface of the first

The first term is the ordinary Coulomb gas; the sum is
over all pairs of sites of an L XL triangular lattice,
q; =0, ~ 1, + 2. . . is the integer charge at site i, and neu-
trality g;q; is imposed. V'(r)—:V(r) —V(0) is the 20
Coulomb potential with singularity removed, where V(r)
solves D;~v(rj —r ) = —2tr8'; with D;~ the lattice La-
placian. With periodic boundary conditions, V' is given
explicitly by Fourier transform,
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FIG. 1. Phase diagram for the classical neutral-integer-
charge 20 Coulomb gas on a triangular lattice, as a function of
temperature T and u. As u increases, the average charge den-

sity increases. The thin dashed lines are where the inverse
dielectric function e ' jumps to zero. The thick solid lines are
first-order transitions. The thin solid line is a second-order
transition. The thick dashed line denotes a crossover region as
opposed to a true thermodynamic transition.
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BZ, and is shown in the inset to phase 8 in Fig. 1. At
T =0, the ground-state charge configuration has an aver-
age (q; ) = —', and is shown as the inset to phase 2) in Fig.
1. The ground state is sixfold degenerate corresponding
to rotations in the phase of qk, by x/3. 2) is separated
from phases A and % by a first-order (heavy solid) line
which meets a second-order (light solid) line at a point

The inverse dielectric function e in phase 2) van-
ishes with a nonuniversal jump (dashed line), at a tem-
perature slightly lower than the second-order line. Both
this line and the KT line between phases A and 8 meet
the first-order line below the point 8.

Phase 8 is described by a ground state with (q; ) =1.
It is ordered in one of the three directions a;, with
charges of alternating sign, and is random in the other
directions. The degeneracy is therefore 2 . A sample
ground state is shown as the inset to 8 in Fig. 1. We ar-
gue below that this ground-state order is lost at any finite
T, and that 8 is separated from the disordered phase 8
by a crossover region (heavy dashed line) rather than a
sharp thermodynamic transition. 8 is separated from
phase 2) by a first-order (heavy solid) line.

The locations of the two first-order lines at T=O are
easily explained. Taking the Fourier transform of the
first two terms in the Hamiltonian (1) gives P
=2k( 2 Vl, —u)qkq —k. When u becomes greater than
mini, [ —,

'
Vl, ], the system will order in a state with nonzero

(qt). From Eq. (2) we find that min[Vk] =x/3 at k =ko.
There is thus a discontinuous change in ground state
from the vacuum to phase 2) at u, ~

=n/6. Since the
average charge density (q; ) = —', in 2), then for u ) u„~,
the ground-state energy density decreases as ( —,

' x/3
—u) x —,

' . As u increases, eventually the system prefers
a higher-density phase with (q; ) = 1. The most sym-
metric such state would have periodicity given by a wave
vector pointing to the center of one of the faces of the
first BZ, for example, k~ =(2x/J3)y (see inset in Fig.
1). However, from Eq. (2) it is seen that for any k such
that k i; = ~x, Vl, =3m/8 is constant. The resulting
phase 8 is thus ordered with alternating + 1 charges in
one direction a;, and is completely random in the other
directions. The energy of this state is ( —,

' 3x/8 —u) X I,
and it becomes the ground state with lower energy than
phase X) for u ) u, 2

= 1 le/48. At T=O, u =u, 2, we find
numerically that there is a finite surface tension, =0.05,
between the ground states of X) and C.

To map out the rest of the u-T phase diagram we have
used Monte Carlo (MC) simulations of the Hamiltonian
[(1) and (2)]. A nearest-neighbor pair of sites is select-
ed randomly at each step of the simulation, and a unit
charge is added to one site and subtracted from the oth-
er. This change is accepted or rejected according to the
standard Metropolis algorithm. We refer to %=L
steps as 1 pass. An initial 10000 passes were discarded
for equilibration, with 200000 passes used to compute
averages. Error bars are estimated by making five in-

dependent runs.
We first consider the second-order transition between

phases 2) and S. This transition line has been located
by observing, at fixed u, the temperature at which the
specific heat C and order-parameter susceptibility g have
their peak. Domany et al. have carried out a symmetry
analysis of possible order-disorder transitions in 2D ab-
sorbed monolayers. The symmetry of phase 2), in their
classification scheme, is denoted (J3x J3)R30 with
particle-hole symmetry (q;~ —q;) and is expected to be
in the universality class of the A Y model with sixfold an-
isotropy. This model has an intermediate phase with
algebraic order and divergent g, which is separated by
KT transitions from a low-T ordered and high-T disor-
dered phase. In this case, the specific heat should have
only a finite cusp. In contrast, we find in our case evi-
dence for a diverging C at a single transition. Assum-
ing the usual scaling relation

C(r,L)-L '@(rL' '), (3)
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FIG. 2. Ratio of specific heats C(T,L)/C(T, L') vs T at (a)
u =0.63 and (h) u =0.54, in phase 2). Three diiferent sets of
lattice lengths L:L' with equal ratio 2 are shown. The con&non
intersection of the three curves is at (T„(L/L')'~"). 10 MC
passes were used.

where r = (T T—, )/T„we—use the method of Barber and
Selke' and plot the ratio R =C(T,L)/C(T—,L') versus T
for dilI'erent values of L and L', but the same ratio L/L'.
The curves should intersect at the single point T„with
R(T, ) =(L/L')'/' determining the critical exponent. In
Fig. 2(a) we plot R vs T for sizes L:L'=12:6, 18:9, and
24:12 at u =0.63. We find scaling in agreement with Eq.
(3), with T, =0.078, R, =2.0+ 0.2, and hence a/v
=1.00+ 0.14. Similar plots at u =0.60 and 0.66 give

values a/v=0. 97~0.14 and 1.10+'0.24. At u =0.54
however, where the second-order line meets the first-
order line at point 8, the ratio analysis shown in Fig.
2(b) gives a diA'erent exponent a/v=1. 51~0.15. One
possible explanation is that 8 is a multicritical point. At
the point where the second-order line meets the first-
order line which separates 2) and 8, we have observed
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very strong Auctuations, and the situation remains un-
clear. We thus have evidence suggesting that the sym-
metry analysis fails to give the correct transition of the
CG.

We next consider phase @. At T=O, every site con-
tains a ~ 1 charge, and so 8 has the symmetry of the Is-
ing antiferromagnet, which on a triangular lattice" has
T, =0 and a finite T=O entropy density. In the CG,
however, the long-range interactions lift some of the
frustration which characterizes the short-range Ising
model, and the ground states are ordered antiferromag-
netically along one of the basis directions a;. The ran-
domness allowed in the other basis direction gives a
ground-state entropy density of ln(2 )/L which van-
ishes as L ee. In Figs. 3(a)-3(c) we show specific
heat C, inverse dielectric constant e ', and average
charge density (q ) versus T for u =0.8 & u, z. While
these numerical results suggest a possible finite T„we
now argue that T, =0. In Fig. 3(d) we show two types
of domain excitations of a ground state. We have nu-
merically computed the excitation energy hE of such
domains of length l in systems of length L ~90. We
find that for l)10, hE approaches a finite constant,
DE=0.79+2(u —u, q) and 4.9, for domains (i) and (ii),
respectively, independent of which ground state is chosen
as the background. Thus once a large enough domain is
created, it costs no further energy to increase in size, and
give a transition to a difI'erent ground state. The finite
probability to excite such domains at any T & 0 disorders
the ground state and drives T, 0, just as excitation of
domain walls disorders the 1D Ising model. It is possible
that other excitations exist which give lower energy bar-
riers between the ground states than those shown in Fig.
3(d). The apparent transition seen in Figs. 3(a) and
3(c) is just a crossover region where such excitations
proliferate. Figure 3(b) shows that these excitations also

= lim 1
—

z (ql, q k)
—] ~ 2K

I -0 (4)

vanishes. The Kosterlitz-Thouless stability argument
requires that e jumps discontinuously to zero at T,
with a jump bounded by e '(T,))4T, . Evaluating Eq.
(4) at the smallest k =4rr/J3L in the finite lattice, and

applying this bound, gives an upper bound on T„and lo-
cates the dashed lines in Fig. 1. In Fig. 4 we plot
E (T,L) vs T for various sizes L. Figure 4(a) is for
u =0.5 in phase A just below the first-order line separat-
ing A from S; Fig. 4(b) is for u =0.63 within phase 2).
A rough estimate of T, is given by the T at which the
curves for diAerent sizes L intersect. For u =0.5, this
estimate is consistent with the KT bound satisfied as an

appear to drive e ' 0. The T where e ' 0 does
show a slight downwards shift as we increase either the
lattice size or number of MC steps in the simulation.

The lattice CG is a representation for vortices in the
LY model on the dual lattice. ' A physical realization
close to 8 is given by the fully frustrated ( —,

'
Aux quan-

tum per unit cell) Josephson-junction array on a honey-
comb lattice. ' ' In this mapping, the only allowed
charges are q;= ~ &,. however, the ground-state order
and degeneracy remain the same as in C. Since vacan-
cies q; =0 are not permitted, we expect that in this model
the ground state is disordered at any T & 0 by excita-
tions like (ii) of Fig. 3(d). Direct MC calculations by
Shih and Stroud ' of specific heat C and helicity
modulus (e ) in this XY model bear a striking resem-
blance to our Figs. 3(a) and 3(b). We have carried out
independent simulations of the CG with q;=+ 2 and
have found similar results.

Finally, we consider the "metal-insulating" transitions
where the inverse dielectric function '
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FIG. 3. (a) Specific heat C, (b) inverse dielectric function
', and (c) average charge density (q') vs T, at u =0.8 in

phase C. 60000 MC passes on an L =12 lattice were used.
(d) Two types of domain excitations which disorder the ground
state at T &0. As I ~, their excitation energy remains
finite.

FIG. 4. Inverse dielectric function e '(T,L) vs T for (a)
u =0.5 (just below the first-order line) in A, and (b) u =0.63
in S, for various lattice sizes L. The common intersection of
the curves for diN'erent L gives an estimate for T, . Intersection
with the dashed line 4T gives the Kosterlitz-Thouless bound on
T, . 10 MC passes were used.
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equality, i.e., we find the universal jump of the ordinary
dilute (u=0) CG. ' However, at u =0.63 we find a
larger than universal jump. Similar nonuniversal jumps
are found at other u in 2). These conclusions are born
out in more detailed finite-size scaling fits which we have
performed, following the approach of Weber and
Minnhagen. ' Comparison of Fig. 4(b) and Fig. 2(a)
suggests that in phase Xl, e ' vanishes at a T,' slightly
lower than the T, where the order parameter (qi, ,) van-
ishes. While the e ' 0 transition in 2) is presumably
aff'ected strongly by the presence of the lattice-induced
ordered charge structure, in A it remains driven by the
pair-unbinding KT mechanism. Recently, Minnhagen, '

based on an extension of the KT recursion relations for
the continuum CG, argued that larger than universal
jumps in t.' ' should occur whenever the system is dense
enough that T, (T*=0.14. For u =0.5 we find T,
=0.08, well below T*; however, we continue to find the
universal jump of the dilute model. '
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