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Observation of Photon Localization in a Three-Dimensional Disordered System
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The diA'usion and absorption coefficients of microwave radiation in random mixtures of metallic and
dielectric spheres are determined from measurements of the intensity correlation function with frequen-

cy shift and of the scale dependence of transmission. We find a narrow window of localization in fre-

quency and metallic concentration. The transition is rounded by the presence of absorption.

PACS numbers: 42.20.—y, 72. 15.Rn, 78.20.Dj

The particle diffusion picture for wave propagation
within a random medium breaks down' when the proba-
bility of a scattered wave returning to a coherence
volume in the sample approaches unity. Constructive in-

terference of time-reversed backward-scattered waves
then suppresses transport and gives rise to localization.
In three dimensions, localization due to disorder can only
occur when the wave is scattered within a coherence
length l (1/k, where l is the transport mean free path
and k =2tr/k is the wave number. This gives the IoA'e-

Regel criterion for electron localization, kl (1. Since
localization is a wave interference phenomenon, it may
occur in principle for classical waves " as well as for
quantum-mechanical electron waves, where it is widely
observed. ' Recent measurements of the scale depen-
dence of the effective diffusion coefficient of microwave
radiation through random metallic samples suggest that
photon localization can be achieved when kl ( 1.6/
(1 f)'t, wh—ere f is the fraction of the total sample
volume from which the wave is excluded by metallic sur-
faces. ' In this Letter, we report the first observations of
photon localization in a random three-dimensional sam-
ple. Localization of microwave radiation is found in a
narrow range of frequency and metallic concentration in

random close-packed mixtures of,'& -in. aluminum and

Teflon spheres. Whereas electron localization occurs as
a result of the combined eA'ects of disorder scattering, as-
sociated with the Anderson transition, and of electron
correlation, associated with the Mott transition, the lo-

calization of electromagnetic (EM) radiation is a pure
Anderson transition since photons do not mutually in-

teract. Moreover, because intensity measurements can
be made in an ensemble of samples, the microscopic sta-
tistical character of the transition can be determined.

There has been considerable interest in specifying the
structural characteristics which lead to localization since
Anderson first showed that electron localization could be
the reason for the vanishing conductivity of glasses as
T 0. Using an independent-electron, tight-binding
model on a periodic lattice with diagonal disorder, An-
derson found that the entire band is localized when the
diagonal disorder is greater than the coupling between
sites. Generally, however, electronic localization is

found in systems in which the density of states is low,
such as in impurity bands of lightly doped semiconduc-
tors and in the pseudogap of amorphous semiconduc-
tors. ' Photon localization has proven to be harder to
achieve. The tight-binding model is not applicable be-
cause photons cannot be bound to a single particle.
Photon-photon interactions are not available to facilitate
localization. The density of EM states in random sam-
ples is only low at long wavelength. But in this case, the
wavelength is much greater than the scale of dielectric
fluctuations d and scattering is weak. It is described by
Rayleigh scattering for isolated particles and by
eAective-medium theory for a high density of scatterers.
The strongest scattering for samples with positive dielec-
tric function occurs for d —1/k. But localization can
then occur only if the scattering cross section is

significantly greater than the geometrical area.
An alternative scattering system in which the wave

propagates between metal spheres is considered here.
Anderson suggested that localization could be achieved
in a random tangle of interconnected metallic wave-

guides. Strong scattering is anticipated when mi-
crowave cutoA' is approached as tr/k becomes comparable
to the channel diameters. The continuous pore network
accessible to the wave in the present sample may be simi-
lar to such structures and the scattering strength may in-
crease as the ratio of the spacing between spheres to the
wavelength decreases over some range. However, a turn
around in scattering strength may occur as this ratio de-
creases beyond some point because the increasing
coherent coupling between neighboring channels en-
hances the eff'ective channel diameter. Another ap-
proach to this problem has been taken by Condat and
Kirkpatrick. Using a pseudosphere approximation, they
predicted that maximum scattering occurs as the wave-

length approaches the sphere resonance and that locali-
zation occurs in random samples of metallic spheres
above a critical density sufficiently near resonance. We
expect that peak scattering occurs when the require-
ments given above for the relationship of the wavelength
to both the pore width and sphere diameter hold simul-
taneously. A window of localization may occur since
scattering is weakened in the limit of long wavelengths
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D(I ) =(vt/3)l/g,

I /( = I /(0+ 1/L, + 1/L .

(la)

(lb)

To leading order in an e expansion in 2+a dimensions,
go=i /(l —l, ). In this Letter, localization is deter-
mined from a comparison of the measured dift'usion

coefficient D (L ) to the effective diffusion coefficient
D, (L;r, ) that the sample would have if it were at the lo-
calization threshold with the absorption rate measured
for the sample. At the mobility edge l =l, and
diverges. Hence, using Eq. (1), the implicit dependence
of D„upon I/r, is given by

D, (L;r, ) = (vl, /3)(1/L+ I/L, ) . (2)

At this point 6'=6, is seen to be constant for L & L„
since dN/dv —L and 6, = [0.96D, (L)/L ]dN/dv. In
samples in which 6&6, and L &L„Bdecreases ex-
ponentially with L whereas in samples in which 6 & 6„6
increases with L 'For L )L„howeve. r, D (L ) ap-
proaches a constant value and 6 increases with L. The
Anderson transition is therefore rounded by the presence
of absorption. The existence of scaling behavior, which
is consistent with localization for L & L„can nonetheless
be determined in samples for which L )L„by the con-
dition D(L) (D, (L;r, ). This condition can only be
satisfied if 6 & 6, for L & L, . In such samples l & l, .

and high metallic density, by eff'ective-medium correc-
tions, as well as in the short-wavelength limit in which
geometric optics may be applicable.

Strictly speaking, waves can only be localized by disor-
der in an infinite medium in which inelastic processes are
absent. Only then will the wave not leak out of the sam-
ple, lose phase coherence, or be absorbed. Localization
can nonetheless be defined in real systems by the condi-
tion that the universal scaling parameter' ' 6, which is
the product of the level width and the density of states
8=6vdN/dv, ' is less than a critical value 6, for some
sample length L. 6' represents the typical number of
modes of the sample within the level width. The level
width is the field-field correlation function with frequen-
cy shift of the transmitted radiation. ' ' It is related to
the diffusion coe%cient D since the field correlation func-
tion with frequency shift is the Fourier transform of the
time-of-flight distribution. ' For 6))6', and L smaller
than the absorption length, given by L, =(Dz, ) 'l,
where 1/r, is the photon absorption rate, c$v

=0.96D/L . ' However, if 6(6, on some length scale
of the medium, wave transport is reduced as a result of
coherent backscattering on all length scales. Propaga-
tion then cannot be described in terms of an intensive
dift usion coeScient. However, propagation can be
described in terms of a scale-dependent, efr ective
diffusion coefficient D(L). For example, for L (L,
= [D(L ) r, ] ', the level width is given by Bv
=0.96D(L)/L . For extended waves, the scaling theory
of localization gives ' '

The samples studied here are contained in a 7.3-cm-
diam copper tube at a sphere filling fraction of 0.60.
The radiation from a tunable K-band oscillator is
launched from a horn placed 20 cm in front of the sam-
ple. Two Schottky diode detectors are placed 2.5 cm
apart at the output face of the sample. T(L) is obtained
from the average value of the intensity measured by the
diodes while the sample is tumbled as the cylinder is ro-
tated about its axis. 30000 readings are taken at each
thickness at intervals of the intensity correlation time
which is of order 10 msec. C(hv) is obtained from the
average of the intensity correlation function of 4000
spectra which are normalized by the average of these
spectra. New configurations are obtained by rotating the
tube momentarily after each spectrum is taken.

The value of D(L) is determined from measurements
of the cumulant intensity correlation function with fre-
quency shift, C(Av) =(SI(v)bI(v+Av)), where the in-
tensity I(v) is normalized to the ensemble-average inten-
sity at the frequency v and BI(v) =I(v) —1 is the frac-
tional intensity fluctuation from the average. ' ' The
three leading terms in the expansion of C(Av) in terms
of the correlation parameter 6 ' are observed and dis-
tinguished by their diA'erent dependence upon frequency
shift. ' In terms of functions F; (Av), which are normal-
ized at h, v=0, the correlation function can be expressed
as

C(hv) = g C;(Av) = g A;8' 'F;(hv) . (3)

where q is the root with negative imaginary part of
q =a +i2xhv/D, a =yl, a=L, ', and y is a number of
order unity which includes the eff'ect of internal
reflection at the boundaries of the sample. For L & L„
Eq. (4) holds even in the critical regime with the
substitutions a =yl 3yD(L)/v and a a(L)
=[D(L)r, ] 'l . C3(hv) is independent of Av, giving
F3(hv) =1. ' ' F2(hv) is found from measurements of
the cross correlation function of intensity at two points at
a separation R =10/k on the output face of the sam-
ple. ' C] in this case does not contribute significantly to
the intensity cross correlation function since it depends
upon the field correlation function which falls in a coher-
ence length 1/k. ' We find that the cross correlation
function can be expressed as the sum of a constant back-
ground and a term which is found to fall asymptotically
as Av 'l and which we associate with Fq(hv). ' ' '
D(L) for L»L, is obtained from a fit of Eq. (3) to the
measured intensity autocorrelation function, using the
value of a obtained from measurements of T(L), and
utilizing D(L) and the A;6' ' as fitting parameters.

The leading term is given by factorizing the complex
fields C~ =~(E(v)E*(v+Av))~ . ' ' For diffusive trans-
port ] 7 ] 9 22

~sinh(qa)/sinh(qL)
~F~ dv

[sinh (aa )/sinh (aL )]
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I.IG. 1. Cumulant intensity correlation function with fre-
quency shift in the range v=18.5-19.5 GHz for f=0 35 The. .
solid line is a fit to the data of the sum of the first three terms
in a perturbation expansion for C(d, v) [Eq. (3)l. The contri-
bution of each of these terms is also shown.

FIG. 2. The frequency dependence of D for f=0.20 (ZI),

f=0.25 (Q), and f=0 35 (0.). D is determined from measure-
ments of C(hv) at L =24, 12, and 6 cm for f=0.20, 0.25, and
0.35, respectively.

T(L ) =sin h (aa )/sin h (aL ) . (5)

The strongest scattering is observed at a metallic filling
fraction f=0.35 and v=19 6Hz. At this frequency, the
exponential tail of T(L) gives a =0.98+'0.1 cm '. The
corresponding value of D for L =6 cm is determined
from the measurement of C(hv) in the frequency range
18.5-19.5 6Hz. The results are shown as the points in

Fig. 1. A fit of Eq. (3) to the data, using Eq. (4) for FI
and the measured value of e, gives the three contribu-
tions to C(d, v) as shown in Fig. 1 and D =(6.0
+ 1.0) x 10s cm /s. Using the values of a and D ob-
tained for this sample gives i, =1.7x10 s. The rela-
tion ' I/v = [0.40/c+ (0.60 —f)n/c]/(I f), where 0—.40
is the volume fraction of air, 0.60 f is the volu—me frac-
tion of Teflon, c is the speed of light in air, and n =1.44
is the index of refraction of Teflon, gives v =2.57 x 10 '

cm/s. The value of v obtained from this relation for a
sample with f=0.30 was found to agree with the value
obtained from D and I which were determined indepen-
dently in that sample. ' Using this value of U gives
k =2rrv/v =4.7 cm ' and I, =1.6/k(1 f) '~ =0.42 cm-.
From Eq. (2), D, (L;r, ) =1.3x 10 cm /s. Since
D(L) &D,(L;z, ), we conclude that the wave is local-
ized. In the absence of absorption in a sample with
equivalent scattering strength D(L) would vanish as
L ~. In the present case, D approaches an asymptotic
value for L »L„because coherent interference is cut off
on length scales greater than L, .

The occurrence of localization is also established here
from measurements of the absorption coefficient. These
results are in agreement with predictions of John and
Anderson. Empirically we And that the transmission
coefficient for diffusive transport for L ) I is given by' '

This result is predicted to hold as well in the presence of
strong scattering if we make the same substitutions for a
and a which are made in Eq. (4). For L &L„T(L)
falls exponentially. For localized waves, a & a,
=[D,(L;z, )r, ] ' . For this sample at 19 6Hz we

find a, (L;r, ) =0.70 cm '. The fact that the measured
a is greater than a, (L;r, ) confirms that the wave is lo-

calized. Because of the small value of D when the wave

is localized, L, is as short as the wavelength itself.
Nonetheless, in our sample D is reduced from the classi-
cal diffusion value, given by D =vl/3 —vl, /3=3.4x10
cm /s, by a factor of —6.

The variation of D and a with v and f is shown in
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FIG. 3. The frequency dependence of a for f=0.20 (a),
f=0.25 (Q), and f=0.35 (o). a is the absorption coefficient
for the transmission for I.)L .
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t limited by absorption in the medium. The results are
consistent with the scaling theory of localization when
the inAuence of absorption is included.
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F1G. 4. A comparison of the measured value of D (i) and
the critical value D, calculated using the measured absorption
rate 1/z, (0).

Figs. 2 and 3, respectively. For f=0.20, D and a are in-
dependent of frequency. T(L) is given by Eq. (5) for
L & 1 cm using a scale-independent value of D. For
f& 0.20, we observe a dip in D and a peak in a centered
at v —19.5 GHz. At f=0.30 and v=19 GHz, D(L)
was found to have a form close to that of Eq. (2), indi-
cating that this point is close to the mobility edge with
l —l, —1/k(1 f)'l ——0.4 cm. ' For f=0.35 at v=19
and 20 GHz, we find D(L) (D, (L;z, ) and a(L)
& a, (L;z, ) at L =6 cm, indicating that the wave is lo-
calized. In this case D is smaller than near the mobility
edge at f=0.30 even though L, is smaller. This is in-
consistent with predictions for extended waves [Eq. (1)]
and can only occur for localized waves. A rounded local-
ization transition as a function off at v=19 GHz is seen
in Fig. 4 in a comparison of D(L) and D, (L;z, ). Struc-
ture in the frequency dependence of D and a occurs only
when D becomes scale dependent and when l-l, . This
suggests that the structure is not ascribable to an appre-
ciable change in I with frequency but rather to a large
fractional change in l —l, as the localization threshold is
approached.

In conclusion, we have observed a narrow window of
localization for EM radiation as the frequency and den-
sity of metallic spheres is varied. The extent of renor-
malization of D and the sharpness of the transition are
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