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Correlation Functions in Liouville Theory
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We show that after integrating over the zero mode in Liouville correlation functions, the remaining
functional integral resembles a free theory and may be evaluated by formally continuing the central
charge. We apply this technique to the unitary minimal models coupled to gravity on the sphere, com-
puting a number of three-point functions. After taking into account the normalizations of operators and
the functional integral, we find exact agreement between the Liouville three-point functions and the re-
sults from matrix models.

PACS numbers: 11.17.+y, 04.60.+n

Given the relative ease with which two-dimensional
quantum gravity may be solved with matrix models, ' it
is somewhat surprising that the continuum formulation,
which ostensibly describes the same physics, has proved
so difficult. Although scaling weights may be extracted
rather easily, ' the numerical coefficients appearing in
correlation functions require more work. Some progress
was recently made in Ref. 4 where the p, q, and radius
dependences of the genus-one partition function for
Liouville theory coupled to minimal models and a com-
pactified boson were determined. An important step in

the argument was to treat the zero mode of the Liouville
field p separately from the remaining modes (see also
Refs. 5 and 6).

In this paper we show that after integrating over the
zero mode of p in Liouville correlation functions, the
remaining functional integral resembles a free-field
correlator and may be computed by formally continuing
the value of the central charge. We apply this technique
to the unitary minimal models coupled to gravity on the
sphere. We compute the partition function and two- and
three-point functions of dressed operators on the diago-
nal of the Kac table. For three-point functions, the alge-
bra is quite involved due to the complexity of operator-
product coefticients in the minimal models. For this
reason, we complete the computation only for a subset of
three-point functions. This restriction, however, is only
to simplify the operator-product coeScients. There is no
exceptional simplification in the Liouville sector and the
general three-point function may be computed by the
same techniques. Using the partition function and two-

point functions to fix normalizations, we find exact nu-
merical agreement between the Liouville three-point
functions and the results from matrix models.

(I) Liouville theory —We start w. ith Liouville theory
in the conformal gauge. ' The action is given by

SL =J By8y — g JgRy+ ~age"',
2n 8z

where

g =4(25 —)/3, = —g/2+ —, {g' —8) '"
We have fixed a background metric g, with curvature R
normalized by

JgR = I —h
8z

on a genus-h surface. As discussed in Refs. 3 and 9, the
measure for p is translation invariant.

Consider correlations of the form

i

n n
p;p{z;) t ~ —SL ~ p, 4(z, )

In order to evaluate the functional integral, we first in-
tegrate over the zero mode of p. Note that the zero-
mode integral may diverge, depending on c, P;, and h. In
this case the integral will be defined by analytic con-
tinuation in c.

We define

y(z) —=y(z)+go, (1.1)
where po denotes the kernel of the scalar Laplacian (con-
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stants) and (t&(z) the space of functions orthogonal to the kernel

Wg((-=o.

Integrating over (t&o we find

(
t1 n

p, y(z;) . p I ( s) so y ~ p.p(z)

l a 1

(1.2)

where

s, = ay8y &—g g&y,
1 - —- 1

n ps = —+(I —h) —g
(1.3)

Assuming for the moment that s is an integer, then the
remaining functional integral in (1.2) is a free-field
correlator. (A similar observation was made in Ref. 6.)
Recall that in a correlation function of vertex operators
in a scalar field theory with total charge (momentum)
zero, the functional integral is independent of the zero
mode and a splitting as in (1.1) must be made to remove
the divergence from the zero-mode integration. The end
result is that the Green's function used to evaluate (1.2)
is orthogonal to the zero mode (see, for example, Ref.
10).

Unfortunately, in general, s will not be a positive in-

teger. In this case, we will first evaluate the functional
integral in (1.2) for c such that s is a positive integer and
then formally continue c back to its original value. We
should emphasize that this continuation in c is not an an-
alytic continuation. We first determine the general form
of (1.2) for a discrete set of values for c, corresponding
to integer s, and then formally evaluate this function on
a value of c outside of this set, corresponding to nonin-
teger s. Such a continuation is of course ambiguous.
We will return to this point at the end of the paper.

(2) Minimal models. —We now use the above tech-

nique to compute some correlation functions in Liouville
theory coupled to unitary minimal models, with

c =1 —6/q(q+ I) . (2.1)

Of course, there is an ambiguity in the normalizations of
operators and the measure of the functional integral.
Therefore, in order to compare with matrix models, we
must compute appropriate ratios of correlators. The
simplest nontrivial example is

(A;A)A, )'Z
(~;~;)(~,~,)(~,~, )

' (2.2)

where y„.„. is a primary field of dimension

l... =(r,' —1)/4q(q+1)

P =(r 2q I)/u'2q(q+ I) .

The correlator of interest is

where A;, A~, and A~ are arbitrary operators and Z
denotes the partition function in Liouville theory (the
universal part of the free energy in matrix models). We
will compute (2.2) for operators on the diagonal of the
Kac table, with appropriate gravitational dressing. We
will also restrict to genus zero.

The dressed fields are

Pi4+i = pr, .r,.e

(2.4)

~here
r l+r2+r3 —

1q
q+ 1 2s+ 1+rl+r2+r3

Two-point functions may be obtained from (8 &A243) by setting r2 =r), r3 =1, and integrating once with respect to p
(and similarly for the partition function). We have suppressed the ghost fields and fix the SL(2,C) invariance by hand,
dropping the integrals over z; and setting z l =0, z2 =1, and z3 =~. After evaluating the matter three-point function''
and integrating over the Liouville mode as described in the previous section, we find

S S' „rId'-, rl I-, —;I-'-'rII-, I-"I-, -ll ", (2.3)i=1 i=I

where D{{,3, 3)){„„,) 1S the operator-product coeeclent that appears 1n the matter three-po1nt function and s 1S def ned 1n

(1.3). The above multiple integral is evaluated in Ref. 12 (formula 8.9). This gives

1.( —~) ( ),r(i+p')' + I ( —ip') I-'I I ("~ ("~ ')p)
z a I-( —p')';=) I (1+ip') ~. =( I (1 —r~+ (r~+i)p')
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n —
1

I (nx) =(2x) ' " n" ' + I (x+k/n), I (x)I (I —x) =x/sin()rx),
l& =0

one may derive
~ 4I (r~ —(r~+l)P ) n p+n(p+)) —2r n(p —I) —2 2 2

r (1 r, + (r—, +i )p') =P r~ 1 p

( ( ))2 ( )U
S(ip') ~ S(ip')S((n+I —i)p)

;=i S(ip);=) S(ip)s((n+I —i)p')
(2.5)

x+ I (I +n+r; —(i —r )p')'
1 J

(=o r(1+r, —(r, —i)p)'

)~ s( p') ~ «I+ —p')'
;=i I (I+ip');=) S(ip) (=o I (1+ip)

where

n =—g r; —1, S(x)—=1 sin(nx)
i=] z'

Note that on the right-hand side of the expressions in (2.5), s only appears through p and p'. Thus, after substituting
(2.5) in (2.4), we may take q to be a positive integer.

We first consider the special case r) =r2 =r, r3 =1, with—D(„„)(,„) =1. We find from (2.4) and (2.5)(]])
' r/q

1

p
(W ~ W &

= '(1 —)'
S(r/(q+1)) r(r/(q+1)) I"(1 —p')

Using

(~„w„w, ) = (~,w„),d

we thus find for the two-point function

The variable q is defined for arbitrary c by (2.1). Unfortunately, we cannot yet restore q to a positive integer (corre-
sponding to noninteger s), since in (2.4) s is the upper bound of the index i U. sing the identities

( &= ( )2 -4 S(r/q) r( r/q)' -r(p')
S(ri(q+I)) r(r/(q+ I))' «I —p')

' rjq

(2.6)

We may also determine the partition function by setting r =1 in (2.6) and integrating

(2)A)) = Z.
dp

After some simple algebra, Z may be written as
2-I 1/q

(1 —p) 'q r(p')
(2.7)p'(I+ p) r(p) 'r (p') 'S(1/q) S(1/(q+ I ) ) r(1 —p')

The operator-product coefticients D~,",',
,'~~, ,„~ have been computed in Ref. 7. Unfortunately, the expressions are quite

complex. For this reason we specialize to the case

r]+r2+r3 =2q —1,
where we have been able to simplify the operator-product coe%cients to the more manageable form

(2.S)

(D(""')( ) ) '=S(1/q)S(1/(q+1)) '
1 p

3

P[ r S(r;/q)S(r;/(q+1))

xS((1+r;)/(q+ I)) r( —r /q) 2r(r /(q+ I))2r((1+r;)/(q+ I )) 4 (2.9)

We emphasize, however, that condition (2.8) is imposed only to simplify the matter three-point function and does not
imply any special simplifIIcation in the Liouville sector. The general three-point function may be treated by the same
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techniques and it is only algebraic complexity that prevents us from discussing it here.
Assuming (2.8) and using (2.4), (2.5), and (2.9), we find for the square of the three-point function

&A,
, A„,A„,) = S(1/q)S(1/(q+1))1 (p) I (p')'(I —p) '

P

S(r;/q)I ( —r;/q)' I (p')
S(r;/(q+1) )r(r;/(q+ I ) ) ' I (I —p')

Combining (2.6), (2.7), and (2.10) we find

&A;A)AI, ) Z rtr2r3
&A;At)&A, A, )&ALAI, ) (q+1)(2q+ I) '

For comparison, we list the results from matrix models,
' r/q

&ArAr)mat mod
=2» p

q+1
' (r I + r 2+ r 3

—I )/2q —
1

&Ar~AltAr3)mat mod rlr2r3 p
q q+1

' -2/q

(2.10)

(2. 11)

(2.12)

2q
(q+ I ) (2q+ I ) q+ I

' 2+1/q

Taking ratios of correlators we see that the matrix mod-
els also give (2.11).

The prescription we have used to continue from in-
teger to noninteger s for three-point functions is given in

(2.5). In other words, the left-hand side of (2.5) is
defined only for integer s, ~hereas the right-hand side is
defined for all s. These expressions were obtained by
straightforward algebraic manipulation and were the
only forms we found that allowed such a continuation.
While we agree that one may artificially add terms
which vanish for integer s but are nonzero for noninteger
s, we have not seen such expressions appear "naturally. "
Finally, the exact agreement between our computations
and the results from matrix models suggests that there is
a rigorous justification for our continuation; however, we
have not yet found one.

Conclusion. —%'e have shown that it is possible to
compute correlation functions in continuum two-dimen-
sional quantum gravity by formally continuing the value
of the central charge. For unitary minimal models, the
correlators we compute appear to be quite difIIerent from
the matrix-model results. However, after taking into ac-
count the normalizations of the partition function and
operators, we are in exact agreement with matrix mod-
els.

%'e feel that this agreement justifies our approach.
Unfortunately, we have so far not been able to extend
the technique beyond calculating certain three-point
functions in Liouville theory coupled to minimal models
as described above. We are thus unable to make contact
with, for example, the weak-coupling analysis of Ref. 5
in which the zero mode is also treated separately from
the rest of the Liouville field.

Our approach suA'ers from a number of drawbacks.

The computations involved quite a bit of tedious algebra.
However, even so, our work was made easier because the
diScult multiple integrals had already been evaluated in
Ref. 12. In order to compute more general correlation
functions, one would first have to derive generalizations
of the formulas in Ref. 12. The problems get worse at
higher genus where the Green's functions are more com-
plicated and integrals over moduli appear. Nevertheless,
it may be possible to use the above techniques to gain
some insight into quantum gravity coupled to matter
with c~ 1.
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