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Comment on “Critical Dynamics and Global
Conservation Laws”

In a recent Letter, Tamayo and Klein' suggested that
the dynamic critical exponent z for a system with only
global conservation of the order parameter should be
simply related to the exponent zp obtained with local
conservation (model B), namely, z =z —2. In particu-
lar, the exact result’ zz=4—n implies z =2—n, i.e.,
z <z4, where z4 is the dynamic exponent for a system
with no conservation laws (model 4). This prediction is
surprising since intuitively one expects that the con-
straint imposed on the dynamics by the conservation law
can only hinder relaxation, so one should have z = z 4.

In this Comment I consider a class of models which
interpolate between local and global conservation laws.>
In the notation of Ref. 1, the equation of motion for the
order parameter, written in terms of its Fourier com-
ponents, is
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where Fly] is the Ginzburg-Landau-Wilson free energy
functional and 6x(z) is a Gaussian white noise with
() =0 and
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For model A4, I'p(k) is a constant, while for a local con-
servation law (model B), I'o(k) =A¢k% 1 consider the
class of models defined by I'o(k) =Xolk|°, with 6= 0.
Using conventional renormalization-group (RG) argu-
ments I find that z=2+0o—n provided 6> o, =z,4—2
+7n. Otherwise, z=z4. This change of behavior at a
critical value of o is a consequence of an interchange of
stability of the conserved and nonconserved fixed points;
i.e., the conservation law is irrelevant for o < o.. Thus
z=max(2+o0—1,z4). In particular, z=z,4 in accord
with intuitive reasoning.

The RG calculation is straightforward, and follows the
treatment of model B given in Ref. 2. The first step is to
divide through Eq. (1) by I'o(k). Anticipating correc-
tions to the equation of motion due to coarse graining,
and dropping the subscripts, I write

1/T(k)=1/rlk|°+1/T. )

This model is in the same universality class as the origi-
nal because I'(k) — A|k|° for |k|— 0. The second term
on the right-hand side of (2) is generated by momen-
tum-independent contributions to the response-function
self-energy.? The RG procedure consists of eliminating
modes with momenta in the range A/b < |k| <A, where
A is an ultraviolet momentum cutoff, and then rescaling
momenta, times, and fields via k=k'/b, t =b%t', and
wiers (b7") =b @~ "2y (1'). The rescaling of A is trivial,
because coarse graining does not lead to any contribu-

tions nonanalytic in k. Hence A is changed only trivially,
by the change of scale.? This gives

/) =bp2te=172(1/0) . 3)

Thus, provided 1/\ is nonzero at the fixed point (i.e.,
provided the conservation law is relevant) we have trivi-
ally z=2+o0—n. Note that this result holds for the
“subdiffusive” case o> 2 as well as the “superdiffusive”
case 0 <2. The case 0 =2 reproduces the conventional
model-B result zg =4 — 1.

To test whether the conservation law is indeed
relevant, we treat the first term on the right-hand side of
(2) as a small perturbation to the model-4 equation of
motion. At the model-A4 fixed point, 1/A still renormal-
izes as in (3), but with z =2z (1/A) =b>T"7"1721(1/2).
Hence the conservation law is asymptotically irrelevant
for 0 < 6. =2z,4—2+n, and model-A4 critical behavior is
recovered. Since z4>2—n quite generally, o.>0.
Technically, by investigating the stability of the model-A4
fixed point against “weak conservation,” we have proved
the irrelevance of the conservation law for o < o, only
when 1/A is sufficiently small. I see no reason, however,
to expect a critical value of 1/A above which the conser-
vation law becomes relevant. Investigating directly the
stability of the conserved fixed point is a much harder
problem.

The case of infinite-ranged spin exchange considered
in Ref. 1 is described by the limit c— 0+, correspond-
ing to the global constraint wy=o(t) =0. This case,
therefore, belongs to the class of systems with o < o, for
which z =z 4.

The numerical results presented in Ref. 1 were inter-
preted as being consistent with z=2—7. I cannot ex-
plain these data. However, equivalent simulations with
infinite-range spin exchange performed by Moseley,
Gibbs, and Jan* are entirely consistent with z =z 4.

I thank N. Jan for discussions.
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