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A Monte Carlo algorithm has been used to study the random-anisotropy model with two-component
spins on simple cubic lattices, in the strong anisotropy limit. The magnetic susceptibility diverges at a
temperature of 7./J=1.91230.03, but no singular behavior is observable in the specific heat near T..
The two-spin correlation function at 7. is described by a critical exponent 7=0.04 & 0.04. The magneti-
zation of the ground state of a lattice of size L is approximately 1/[0.371n(L) + 1] per spin. At T=0 the
value of 7y is —0.34 +0.06, which agrees with small-angle neutron-scattering experiments on certain

amorphous magnetic alloys.

PACS numbers: 75.10.Nr, 75.40.Mg, 75.50.Kj, 75.50.Lk

The magnetic properties of amorphous rare-earth-
transition-metal alloys have been studied for about twen-
ty years,! and a significant amount of work has been
done. Perhaps most striking was the discovery that at
low temperatures the small-angle elastic-scattering in-
tensity for neutrons, which is proportional to the equal-
time two-spin correlation function, behaves as k ~%4,
where k is the magnitude of the momentum transfer.
This phenomenon was seen in amorphous alloys of
TbFe,? HoFe,? and ErCo.* The effect does not occur in
YFe or GdFe alloys, so it appears to be caused by the
random single-site anisotropy which acts on the non-S-
state rare-earth atoms in these amorphous alloys. An ex-
planation of the k ~2* law has remained as a major chal-
lenge to our understanding of these materials.

The Hamiltonian which is used to model these ran-
dom-anisotropy magnets was introduced by Harris,
Plischke, and Zuckermann® (HPZ). In its general form,
it may be written as

, ()
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where each S; is an m-component spin and the fi; are un-
correlated random m-component unit vectors. The con-
stants J and D are assumed to be positive. HPZ showed
that a mean-field approximation for this Hamiltonian
gives a ferromagnetic phase at low temperatures. Equa-
tion (1) can also give rise to spin-glass behavior under
certain conditions, as was made clear by later work. %’

When we go to the strong anisotropy limit, D/J— oo,
each spin is constrained to be parallel to its local anisot-
ropy axis. Equation (1) then reduces to

Hoe=_J(Z)(ﬁi‘ﬁj)S,‘Sj (2)
ij

in the absence of an external magnetic field. Each S; is
now an Ising variable, which takes on only the values
*+ 1. This Hamiltonian was solved in the infinite-range
case by Derrida and Vannimenus.® It is convenient for
both computer modeling®'® and high-temperature series

expansions,''™!3 and it can also be used as a starting

point for real-space renormalization-group calcula-
tions.>'2'* In this work we present the results of large-
scale Monte Carlo simulations of Eq. (2), for the case of
planar random anisotropy (m=2) on simple cubic lat-
tices (d=3). This case was predicted”!>! to be espe-
cially interesting, and we will see that the results fully
justify our expectations.

Monte Carlo calculations of Eq. (2) for the cases
m=2 in d=2 and m=3 in d=3 were performed by
Jayaprakash and Kirkpatrick,® who found that the stan-
dard single-spin-flip heat-bath method was not an
effective technique for this problem. They found it
necessary to use a combination of single-spin, pair-spin,
and four-spin flips in order to achieve a workable algo-
rithm. The case we study in this work, m =2 in d=3, is
not as frustrated as those studied by Jayaprakash and
Kirkpatrick, so four-spin flips were not used. A Monte
Carlo cycle consisted of four single-spin-flip passes
through the lattice alternating with three pair-flip passes
(one for each direction). A program using a version '® of
the Swendsen-Wang'” cluster method was also tried.
Even near T, the heat-bath method using a combination
of single-spin and pair-spin flips was about 6 times as
efficient as the cluster method, for 32x32x32 lattices
(L=32).

The algorithm was tested on several lattices of size
L =20 which had been studied previously'® by a non-
equilibrium simulated-annealing method. It was found
that the Monte Carlo program worked quite well down
to the lowest temperatures. The low-temperature states
found by the Monte Carlo method for these L =20 lat-
tices had a high degree of overlap with the lowest-energy
states of the same lattices found by the simulated-
annealing method. This is significant, as it indicates that
the ground states of these lattices are essentially unique.
Therefore, the scaling concepts which have been devel-
oped by Fisher and Huse'® to describe the low-temper-
ature behavior of the three-dimensional Ising spin glass
should also be applicable to the m =2 random-anisotropy
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magnet in d =3. The numerical values of the scaling ex-
ponents should be different, since for this model the
domain walls are much stiffer than for the Ising spin
glass.

The program was then used to study larger lattices. It
was not difficult to work with L =32 lattices, and even
L =48 lattices could be successfully cooled down to low
temperatures if some care was exercised. Sharp freezing
transitions were exhibited by these lattices. This means
that correlation times increased rapidly as T was low-
ered. T, was taken to be the highest temperature for
which the lattice remained substantially correlated over
a time of 2000 Monte Carlo cycles. Correlation times at
T=T,+0.05J were typically an order of magnitude less
than this. (The reader should remember that each of
these cycles is equivalent to a large number of single-
spin-flip passes through the lattice.) For the L =32 lat-
tices, the freezing occurred in the temperature range
1.95<T./J<2.00, and for the L=48 lattices it oc-
curred at 1.92<7T,./J <1.95. The ranges indicate the
variation in 7, among lattices of the same size. These
variations were highly correlated with variations in the
ground-state energy, as one would expect. The varia-
tions in T, were about a factor of 4 larger than the varia-
tions in the ground-state energy, however. No significant
correlation was observed between these quantities and
variations in the ground-state magnetization. Each lat-
tice was cooled down through T, several times, in order
to insure that the system did not get stuck in a large-
scale metastable state. Data obtained from the lowest-
energy state found for each of these lattices are dis-
played in Table I, along with data previously obtained by
the simulated-annealing method ' for smaller lattices.

The program was also used to study two L =64 lat-
tices. Both of these lattices froze at about 1.93J. For
these very large lattices, an attempt to find the ground

TABLE 1. Ground-state data for the m=2 random-
anisotropy magnet on LxL xL simple cubic lattices. M? and
AM? are the average and standard deviation of the ground-
state distribution of magnetization squared. Eo and AE, are
the average and standard deviation of the ground-state energy
distribution (in units of J).

L Samples M? AM? Eo AEy
3 192 0.4779 0.0678 —1.5845 0.1496
4 128 0.4244 0.0562 —1.5458 0.1001
5 96 0.3837 0.0413 —1.5345 0.0517
6 64 0.3596 0.0416 —1.5238 0.0465
8 40 0.3193 0.0375 —1.5101 0.0312

10 32 0.2884 0.0290 —1.5086 0.0239

12 32 0.2665 0.0247 —1.5082 0.0137

16 32 0.2425 0.0307 —1.5083 0.0118

20 24 0.2290 0.0280 —1.5077 0.0057

32 16 0.1965 0.0166 —1.5052 0.0033

48 4 0.1695 0.0140 —1.5063 0.0014

states was judged to be impractical. Considering all of
the data, and allowing for the shift of the freezing tem-
perature as a function of size, we can estimate that

T./J=1.91%0.03 3)

in the limit L — oo. Although there is a broad maximum
in the specific heat, centered at about 1.95J, this peak
does not appear to “sharpen up” as L becomes larger.
Therefore, within the accuracy of the calculation, there
is no evidence for any singular behavior of the specific
heat at the freezing transition. “Cold start” initial con-
ditions (using a fully magnetized initial state) were also
used, to test for a possible first-order transition. No evi-
dence for any discontinuous behavior at 7. was found.
The value of T, found here is slightly higher than the
one which was quoted on the basis of extrapolation of the
high-temperature susceptibility series.'> This difference
is not very meaningful, as the high-temperature series
were deliberately analyzed using assumptions which
would give the lowest reasonable value of 7.

An inspection of Table I reveals that the (normalized)
magnetization of the ground state exhibits a slow decay
as a function of L. We define the average magnetization
M (L) to be the square root of M2(L), as given in Table
I. (Since the width of the distribution is not large, and
scales approximately as the average value, the precise
definition we use is not crucial.) By plotting the data as
shown in Fig. 1, we see that they are fit remarkably well
by the simple equation

M@L)=[037In(L)+1] 7", (4)
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FIG. 1. Inverse of the average magnetization (as defined in
the text), 1/M, vs lattice size, L, for L XL XL simple cubic lat-
tices, for the random-anisotropy model with m=2 and D/J
=oo, The L axis is scaled logarithmically. The error bars for
L =48 show 1 standard deviation. The error bars for smaller L
would be about the same size as the plotting symbols.
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The form of Eq. (4) is likely to be universal, although
the constant which multiplies In(L) should be a function
of D/J, etc. An analytical derivation of Eq. (4) would
presumably involve the free energy of vortex lines. This
general scenario was proposed by Fisher, !° building upon
some ideas of Halperin'® regarding the role of vortex
lines in three-dimensional XY models.. Random-anisot-
ropy models possess a long-wavelength instability?° for
d =3, but when m =2 this is not sufficient'%2! to destroy
the long-range spin correlations. A phase with an infi-
nite magnetic susceptibility, but no true magnetization,
was first proposed for three-dimensional random-aniso-
tropy models by Aharony and Pytte,?? for somewhat
different reasons.

One can also consider the effect of higher-order ran-
dom anisotropies.?*?* Renormalization-group expan-
sions about both four dimensions?* and two dimensions?*
give the result that a threefold random anisotropy should
be irrelevant for m =2 in d=3. This has been confirmed
by numerical work.'®? Therefore, the infinite suscepti-
bility phase appears to be unique to the case of twofold
random anisotropy. The threefold random-anisotropy
system also shows? a well-defined XY-like specific-heat
peak at T, in contrast to the twofold case.

To compare our computer simulations with the small-
angle neutron-scattering (SANS) experiments,? 26 we
calculate the angle-averaged two-spin correlation func-
tion C,(k) by Fourier transforming the spin states, and
then squaring. The results for 7=0 are shown in Fig. 2,
with the octagons giving the average over the L =32 lat-
tice ground states, and the plusses for L =48. The data
for the two lattice sizes fall right on top of each other,
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FIG. 2. Angle-averaged two-spin correlation at 7=0, for
the m =2 random-anisotropy model. Octagons show data from
32x32x32 simple cubic lattices, and the plusses from 48 x48
X 48 lattices.

within the statistical accuracy, as they should. On this
log-log plot, the data at small k can be fit by a straight
line with a slope of —2.34 +0.06, in excellent agreement
with the k ~%* law found at low temperatures by the
experiments. This exponent is conventionally?? called
2 —mn, so the result may be written

n=—0.34+0.06 . (5)

The experimental papers claim that this exponent should
be corrected for systematic errors. This will not affect
the agreement between the simulations and the experi-
ments, as similar correction factors are applicable to
both sets of data. It might be objected that the experi-
ments should correspond to an m =3 model, rather than
m=2. The experimental samples were made by sputter-
ing, however, and such samples usually have a significant
amount of growth-induced anisotropy. Amorphous Dy-
Cu, which is a good m =3 system, does not exhibit these
effects.?”?® Since the structure of the experimental sys-
tems is quite complex, the ability of the relatively simple
Hamiltonian, Eq. (2), to reproduce the primary features
of their behavior is a very significant result.

Results for C,(k) at T=1.95J are shown in Fig. 3.
These data are the angle-averaged Fourier transforms of
twelve statistically independent equilibrium spin states,
six each from two different L =64 lattices. A tempera-
ture slightly greater than T, was used in order to insure
that these states were truly independent equilibrium
states. By fitting the small-k data with a straight line, as
before, we obtain the critical exponent

17=0.04+£0.04. 6)

This is indistinguishable from the value of n for an iso-
tropic m =2 magnet (or, for that matter, an m =1 or iso-
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FIG. 3. Angle-averaged two-spin correlation at 7=1.95/,
for the m=2 random-anisotropy model. Data from 64x64
X 64 simple cubic lattices.
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tropic m=3 magnet). It is clear from these data that
the entire L =64 lattice is correlated at 7=1.95J. In
contrast, the data for 7'=2.00J (not displayed) show
clear evidence of rounding of the small-k peak. This in-
dicates that we are looking at a sharp phase transition,
rather than some kinetic effect.

The random-anisotropy model has also been used to
describe certain crystalline metallic alloys.?~3? There-
fore, the results presented here are likely to find a broad
range of applicability. In the presence of an underlying
crystalline lattice, care must be exercised in the deter-
mination of which universality class a particular experi-
mental system should correspond to m=1, 2, or 3, or
perhaps something more complicated.

In summary, large-scale Monte Carlo simulations of
the m=2 random-anisotropy magnet have been per-
formed. The results indicate the presence of a sharp,
continuous phase transition, but no singularity is found
in the specific heat at 7T.. The low-temperature phase is
characterized by infinite-range ferromagnetic correla-
tions, but no true magnetization. The long-wavelength
behavior of the two-spin correlation function matches the
form which has been found by small-angle neutron-
scattering in certain amorphous rare-earth-transition-
metal alloys.

The author would like to thank R. H. Swendsen and
M. C. Ogilvie for helpful discussions about Monte Carlo
algorithms, and for encouraging him to undertake this
project. The bulk of the computation was performed on
the Washington University Chemistry Department’s
Trace Multiflow 2 computer.

Progress in this field may be followed through the Proceed-
ings of the Annual Conference on Magnetism and Magnetic
Materials, which, for the past several years, has appeared in
the Journal of Applied Physics.
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