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Electron Transport in a Mesoscopic Annulus, Driven by a Time-Dependent Magnetic Flux

B. J. van Wees
Department of Applied Physics, Delft University of Technology, 2600 GA Delft, The ivetherlands

(Received 12 December 1990)

Classical and quantum electron transport in an annulus formed by a two-dimensional electron gas in a
perpendicular magnetic field is studied. The transport is driven by an enclosed time-dependent magnetic
flux, and is described with a Landauer-Buttiker-type formalism. Transport current is generated because
the transmission and reflection probabilities of the electrons which are emitted by the reservoirs on the
inside and outside of the annulus are modified from their static values. The role of the probes, as well as
the eAect of scattering between the inside and outside of the annulus, is studied.

PACS numbers: 72. 10.Bg, 72.20.My

The Landauer-Buttiker formalism for electron trans-
port has been very successful in describing electron
transport in mesoscopic conductors. ' In this description
the current through a conductor which connects two
electron reservoirs is expressed in terms of (energy-
dependent) transmission probabilities T(E) of electrons
which are emitted by these reservoirs. An applied volt-

age V creates a diAerence eV =p2 —p 1 between the elec-
trochemical potentials of the reservoirs. For a one-
dimensional (spin-degenerate) system at zero tempera-
ture the current I is then given by

(1)

For small V, Eq. (1) yields a conductance G =(2e /h)
x T(EF), with T(EF) the transmission probability at the
Fermi energy.

The above formalism applies to electron transport in

conductors which are subjected to time-independent po-
tentials. The electron transport is then due to an imbal-
ance between p~ and p2, since in equilibrium (p~ =pq)
the current flowing from reservoir 1 to reservoir 2 is ex-
actly canceled by an equal current which flows in the op-
posite direction. However, electron transport between
reservoirs with p ~

=p2 can take place when a time-
dependent potential (either a scalar potential or a mag-
netic vector potential) is present.

In this Letter I will study the electron transport (at
zero temperature) in an annulus (Corbino disk) with cir-
cumference L, which is formed in a two-dimensional
electron gas (2DEG) [see Fig. 1(a)]. The 2DEG is sub-
jected to a time-independent perpendicular magnetic
field 8 in such a way that only one (single-spin) Landau
level is occupied. In addition, the annulus is threaded by
a time-dependent magnetic flux @, which increases
linearly with time. Electron transport from the outside
to the inside of the annulus is induced by the azimuthal
electric field Ee=(1/L)d@/dt. This system has been
studied by several authors. A special feature is that
under certain conditions exactly one electron (per occu-
pied Landau level) is transported for each fiux quantum
h/e which is added to &.

I will present a microscopic description of the electron
transport, which takes into account explicitly the cou-
pling between the annulus and the electron reservoirs, as
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FIG. l. (a) Schematic layout of the system, illustrating the
electron flow in edge channels. (b) Cross section of the an-
nulus, showing the potential barriers in QPCs l and 2 (for sitn-

plicity, the potential barrier of QPC 3 is not shown). The
currents which flow at diff'erent energies are shown for elec-
trons injected by reservoir 1 (solid arrows), and for electrons
emitted by reservoir 2 (dashed arrows).

well as the scattering between the inside and outside of
the annulus. For this purpose the Landauer-Buttiker
formalism, which expresses the current in terms of
reflection and transmission probabilities of electrons em-
itted by reservoirs, is extended to the time-dependent
case. The crucial point is that a transport current is gen-
erated, because in the presence of a time-dependent @
the reflection and transmission probabilities are modified
from their static values. Because of the straightforward
way in which the time-dependent flux can be incorporat-
ed, this is an elementary model system for the study of
transport induced by time-dependent potentials.

In high magnetic fields electrons with energy E move
along equipotential lines, given by eV(x,y) =E —

—,
' hen, .

The states which are relevant for the transport are locat-
ed at the boundaries of the 2DEG where the Landau lev-
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el intersects the Fermi energy, and form the edge chan-
nels. At these boundaries an electric field F. is present,
perpendicular to the boundary. The electrons in edge
channels 1 and 2 move in opposite directions with a drift
velocity UD =~E~/B. The system is coupled to 2DEG re-
gions on the outside and inside by means of quantum
point contacts (QPCs) 1 and 2. The transport through
these QPCs can be described by the (energy-dependent)
transmission and reAection probabilities T~(E) and

T2(E) and R~(E) =1 —T~(E) and Rq(E) =1 —T2(E).
A potential barrier is present in the QPCs. The QPCs
reflect all electrons with energies below the barrier,
T

~ (E),Tz(E) =0 for E & 0, and partially transmit elec-
trons with energies above the barrier, T~(E) =T~ and

T2(E) =Tq for E )0. Note that the zero of the energy
scale is chosen to coincide with the top of the barrier of
the QPCs. The transmission and reAection probabilities
are given by T(E) =t (E) and R(E) =r (E). The am-

plitudes r and t appear in the S matrix, which describes
the relation between the (complex) amplitudes of the
currents which enter and leave the QPCs:

it (E) —r (E)
(E) (E) (2)

with r(E) and t(E) real and r (E)+t (E) =1. The
edge channels on the inner and outer perimeters can be
coupled by QPC 3, with T3(E) =0 for E &Eb, and
T3(E) = T3 for E )Eq. The barrier height '

E& for
QPC 3 is taken below that of QPCs 1 and 2. When
T3=1, the edge channels are decoupled, while when

T3 =0 the electron Aow around the annulus is prohibited,
and the system becomes insensitive to @. Ideal bulk
contacts are connected to the 2DEG regions on the inside
and the outside.

For the description of the electron transport, I define
the following (energy- and flux-dependent) transmission
and reAection probabilities: "

j„(e) j, , (e)
T2)(E,@)= . , R))(E,C&) =

joi«) ' ' joi«) '

(3)
j; ) (e) j;2(e)

Ti2(E,@)= . , R22(E, C)= .
jo~ E jo~ E)

in which jo~ (E) and joz(E) indicate the currents (per
unit energy) which are emitted into the annulus at ener-

gy E by reservoirs 1 and 2, and j;~(@) and j;2(C&) indi-
cate the currents which Aow back into reservoirs 1 and 2
as a result of the currents jo~(E) and jo2(E). Note that
these currents can have energies diAerent from E. The
injected currents are given by j~i(E) =jo2(E) e/it
E & EF and jo~ (E) =jo2(E) =0 for E )EF. The
currents I~(N) and I2(N) which flow into the annulus
through QPC 1 and QPC 2 can now be written as
(pl P2 EF)

EF
I 1(N) =—

~ [I —R ( ( (E,N) —T ) 2(E,N)]dE, (4)

eI2(@)=— [1 —R22(E, A) —Tp( (E,@)]dE . (5)h~o
2034

For static potentials,

R11(E,&)+ T12(E,N) =R22(E, 9) + T21(E,&b) = 1

and I~(@)=Iq(@)=0. As shown below, I~(&) and
I2(&) can be nonzero in the presence of time-dependent
flux because the reflection and transmission probabilities
deviate from their static value.

In the classical description of the transport the phase
(coherence) of the electrons is not taken into account.
The azimuthal electric field E~ induces an additional
drift velocity Ee/B in the radial direction. Thus electrons
which move in edge channel 1 lose an energy AE =e
xdC&/dt in one revolution around the annulus, while
electrons in edge channel 2 gain an amount AE. Figure
1(b) illustrates how transport takes place for the case
when T3=1, and T] =T2=T. A fraction 1 —T of the
electrons injected by reservoir 2 at energy E is reflected
at QPC 2. The remaining fraction T is transmitted, and
makes one revolution, by which it gains an energy hE.
Upon reaching QPC 2 again, another fraction T is
transmitted back into reservoir 2, and the remainder
T(1 —T) makes another revolution, and so forth. Even-
tually the injected current is reAected entirely: Rzz(E)
=1 and T~z(E) =0. [Note that in the classical case the
transmission and reAection probabilities do not depend
upon @, and that current conservation requires that
R22(E)+T~2(E) =1 and R~~(E)+T2~(E) =1.] The sit-
uation is diAerent for electrons emitted by reservoir 1.
After 1V =Int(E/AE) revolutions the energy of the frac-
tion T(1 —T) has fallen below zero, and as a result this
fraction is completely reflected at QPC I. When its en-
ergy has dropped belo~ Eb, it is reAected to the inner
perimeter at QPC 3. It will then gain energy and leave
the annulus via QPC 2. This implies T2~ (E) = T
&&(1 —T) and R~~(E) =1 —T(1 —T), with
=Int(E/AE). This shows that the transport current is
carried by electrons with incoming energies which are
close to energies where the transmission probabilities of
QPC 1 and QPC 2 change with energy. ' Tq~(E) and
R22(E) are shown in Fig. 2(a) for T=0.3 and EF
=18AE. Evaluation of I~ (= —I2) with Eqs. (4) and
(5) shows that for EF»AE one obtains the anticipated
result that one electron is transported per Aux quantum.
When EF is not much larger than hE, the current is less
than this.

The currents (per unit energy) f~(E) and fq(E) which
flow back into reservoirs 1 and 2 are given in Fig. 2(b).
From this the power which is dissipated in the reservoirs
can be calculated:

f+ oo

Pd;, =—
~ 2E [f( (E)+f2(E) —2]dEego

2 AE T[ln(R)] for « T«1. (6)

The power which is supplied by the magnetic field is
given by I' =(dN/dt) fj, (E)dE, with j,(E) =j,~(E)—j,z(E), the difl'erence between the circulating currents
in edge channels 1 and 2 [see Fig. 2(c)]. This is equal to



VOLUME 66, NUMBER 15 PH YSICAL REVIEW LETTERS 15 APRIL 1991

(a) Rl 1(E)

T21(E)

T„(E,N)
E= h,E

0—

(b)
f, (E) fz(E)

R22(E,@

16 AE

(c) 0'

0 10 20 30
40-

ENERGY (h,E)

FIG. 2. (a) Reflection probability Rli(E) and transmission
probability Tpi (E) for electrons emitted by reservoir 1. (b)
Currents (per unit energy) which flow back into reservoir 1

[fl(E)], and in reservoir 2 [fq(E)]. (c) Circulating current
(per unit energy) j,(E).
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the dissipated power, since the energy which is stored in
the annulus does not depend on @ in the classical case.

When T3 & 1, electrons which move in edge channel 1

can be scattered to edge channel 2, and vice versa. Cal-
culations show that in this case the current is rednced
below one electron per flux quantum.

I now discuss the transport in the quantum regime. In
high magnetic fields' the phase p which is acquired in
one revolution is related to the total enclosed flux @t
(@«,=@plus the enclosed flux through the 2DEG). For
electrons in edge channel 1, pi =2'(e/h)+, ti and in
edge channel 2, pq

= —2'(e/h)@to, q. The energy depen-
dence can then be written as' pi (E) =2'(e/h)@
+(2~L/hv )E and y, (E) = 2~(e/h)e+—(2~L/hvo)E.
When T1,T2 =0, and T3 =1, electron states are formed
at energies for which pi (E) =x/2+ (integer) 2n and
yp(E) = —x/2+ (integer )ztr.

The effect of the time-dependent flux can be taken into
account by a time-dependent phase shifft" e (t)

'Pi (t)exp( —ihrot ) for the wave function in edge
channel 1 and a phase shift ~q(t) @q(t)exp(iArot) for
the wave functions of edge channel 2. The frequency
shift Aro corresponds with an energy change hero =/3E.
The transmission and reflection probabilities can now be
obtained by calculating the propagation of a wave
0',„(x,t) =exp(ikx —irot) which is emitted by a reservoir

t th nnulus. ' The injected current per unit energy
f thisis then given by j;„=evDl%'l . The propagation o t is

wave in the annulus is calculated by an algorithm which
calculates the reflected and transmitted waves by match-
ing the wave functions at the QPCs, as well as taking
into account the matching conditions due to the time-
dependent flux. The output of the algorithm is the com-
plex amplitudes t„(@)and r„(@)of the wave functions
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FIG. 3. (a) Top left panel: Flux dependence of Ri|(E,N).
Top right panel: Flux dependence of T&l(E,&P) and R22 E e).
(b) Flux dependence of the current I| through QPC 1 and the
current Iq through QPC 2 (in units AEe/h). (c) Flux depen-
dence of the circulating currents 1,| and I,i (in units AEe/h
for the static case (dashed lines) and the time-dependent case
(solid lines).

with energies h (to+ n/3, ro) which make up the total
reflected and transmitted wave functions:

e„t(x,t) =Jr„(e)exp[ ik„x i(r—o+na—ro)t],
(7)

,(x, t) =g, t„(@)exp[ik„x—i(ro+ni3ro)t] .
n

The reflected and transmitted currents (evaluated at
2=t=0) are now given byj„t=evDI+rerl =evDI&nrn(@)l

and j„,=evD
l +t„,l =evD lg„t„(@)l . The reflection

and transmission probabilities can then be calculated
with Eq. (3).

Figure 3 shows the results. The parameters are Ti, T2
=0.09, T3=0, and Eb = —55E. The energy change is
taken to be /ATE =(0.00125/2rr)DE, and is much smaller
than the spacing DE =hvD/L between consecutive elec-
tron states in the annulus. This corresponds to the "adi-
abatic" regime where the relation between the transport
current and d@/dt is linear. The results can be under-
stood as follows: A wave with energy hE emitted by
reservoir 1 has a probability 0.91 of being reflected at
QPC 1. The transmitted fraction enters the annulus,
loses energy, and cannot be transmitted through QPC 1

anymore. Therefore, Rl|(AE,N) =0.91, independent of
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Electrons with E =2hE have the possibility of being
scattered back after one revolution around the annulus.
Therefore, R~~(2AE, &) shows structure due to the in-
terference of two waves with energy 2hE and hE. Note
that due to the constructive interference of the waves
with diN'erent energies, the reAection and transmission
"probabilities" can become larger than 1. For electrons
with higher incoming energies the backscattered wave
consists of many components. The R~~(80AE, @) trace
shows that when the flux is increased and crosses the
value @= —,

'
@0, the reAection probability first drops

below 1 and then rises above 1. This can be understood
by the charging and discharging of an electron state in

edge channel I. Figure 3(a) shows that the transmission
probabilities Tz~(E, N) peak at @=—', @p. The reAection
probabilities Rqq(E, @) do not depend on energy and can
be understood in terms of the charging and discharging
of electron states in edge channel 2. The transmission
probabilities T~2(E,@) (not shown) are zero, since no
electron wave which is emitted by reservoir 2 can reach
reservoir l.

The transmission and reAection probabilities, averaged
over one Aux quantum, can be shown to be equal to their
classical counterparts shown in Fig. 2(a). The currents
through the QPCs, obtained from Eqs. (4) and (5) with
EF=40AE, are shown in Fig. 3(b). As anticipated, the
total charge which enters the annulus at @= 4 @0 and
which leaves the annulus at @= 4 @0 equals one elec-
tron, so that eAectively one electron is transported per
flux quantum. Similar to the classical case this is only
true when EF»h, E.

Figure 3(c) shows the Aux dependence of the circulat-
ing currents in edge channels 1 and 2. Also shown is the
Aux dependence of the circulating (persistent) currents
for a time-independent Aux. ' Because of the time-
dependent Aux I, ~ is reduced below its static value, while
I,2 is enhanced above its static value. The imbalance be-
tween I, ~ and I,2 implies that the system dissipates
power. Its Aux-averaged value

is found to be close to the classical value obtained from
Eq. (6) [20.8(hE) /h and 20.2(AE) /h, respectively].

When T3 & 1, the current is found to be less than one
electron per Aux quantum, similar to the classical case.
In this case a further study of the dependence of the
current on the parameters of the system is required.

In summary, I have given a description of electron
transport generated by a time-dependent Aux, in the adi-
abatic regime. An interesting continuation would be to
study the nonadiabatic regime, where Zener tunneling
between adjacent electron levels is expected to play an
important role. '
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