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Scaling in Open Dissipative Systems
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The scaling behavior of open dissipative systems including the Kim-Kosterlitz exponents for interfacial
growth, and the current fluctuations in a flowing sandpile are derived using a generalization of the argu-
ments applied by Kolmogorov to the inertial range of turbulence. The approach may be considered a
nonequilibrium equivalent to Flory theory.
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The scaling behavior of open dissipative systems far
from thermal equilibrium such as interfacial growth, '

self-organized criticality (SOC), and 1/f noise involve
the nonlinear collective interactions of numerous degrees
of freedom. One approach to studying this behavior is

by deriving Langevin-type equations which are assumed
to incorporate the physics. Typical of such equations is
the Kardar-Parisi-Zhang (KPZ) equation for the height
fluctuations h(r, t) in an interface growing with a veloci-

ty A, normal to the interface

Bh/Bt = VV h+ (l/2) (Vh ) +g(r, t ),
where

(t1(r, t )g(r', t') & =DS(r —r') S(t t') . —

Other examples would include the Hwa-Kardar (HK)
equation for fluctuations in a flowing sandpile, and the
Sun-Guo-Grant (SGG) equation for the surface height
of a driven interface with a conservation law.

These nonlinear equations are, in genera1, insoluble.
Therefore, most of the efforts in the past have been fo-
cused on determining the scaling behavior of the Auctua-
tions using a dynamic renormalization-group (RG) ap-
proach or by direct numerical solutions of these equa-
tions. The dynamic RG has had only a limited success
in the study of dissipative systems because there is no
Hamiltonian formulation for nonequilibrium processes
and in most cases RG equations cannot be formulated or
solved. Numerical solutions, on the other hand, are of
practical importance, but can only give approximate
values of the scaling exponents. But since numerical re-
sults are only approximate and cannot be used to deter-
mine universality and crossover behavior, they do not
provide physical insight into these processes. In addition,
unlike the scaling behavior at a critical point which is de-
scribed by a single exponent, fluctuations in dynamical
systems can have different scaling behavior depending on
the length scale. Thus, it would be useful to have an ap-
proach that could be readily applied to Langevin-type
equations and which could be used to determine the ex-
ponents in any dimensions for different scaling regimes.

In this Letter we propose a new approach for studying

the scaling behavior of Langevin-type equations for dissi-
pative dynamical systems. Our approach is similar in

spirit to the scaling arguments used by Kolmogorov in
the analysis of fully developed turbulence and is based on
the analogy between Langevin-type equations and the
forced Navier-Stokes equation. We show that this ap-
proach can be applied to derive not only the critical ex-
ponents in any dimension, but also the fluctuation ampli-
tudes, critical dimensions, and regimes of validity, where
various exponents may be observed. This approach may
be considered a nonequilibrium equivalent of the Flory
theory for equilibrium scaling. We demonstrate the ap-
proach by several examples; some such as how the Kim-
Kosterlitz exponents may be derived from the KPZ
equation are new, others such as the dynamic and
roughening exponents for the HK equations and the
current fluctuations in SOC are rederived to show the
generality of the approach. The previous examples in-
volve white noise, and therefore we also consider our ar-
guments in the presence of colored noise and quenched
randomness.

Let us begin by noting that if all the transport coef-
ficients such as v, X, and D in the KPZ equation depend
on purely microscopic length scales a, then on scales
l)&a these equations describe the macroscopic behavior
in the same manner as the Navier-Stokes equation,

Bv/Bt+v Vv= —(1/p)Vp+vV v+f(r, t),
describes turbulent flow. Here V v=0 for the velocity
field of an incompressible fluid, with (f(r, t) f(r', t'))
=e8'(t —t') being the noise correlation function if we are
considering the inertial range of turbulence on scales
below the stirring length scale l,„& at which a mean ener-

gy input per unit mass per unit time e is being pumped
into the fluid. Indeed, by substituting v = —Vh and
f = —Vq, it is possible to transform Eq. (1) into the
Burgers equation Bv/St+tv Vv=vV v+f(r, t), which
makes the similarity all the more striking. This analogy
extends to the visual domain; for instance, the images of
turbulent boundary layers near walls' appear remark-
ably similar in structure to computer simulations of in-
terfacial growth.
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L fL if t» tL,
(3)

where W(L, t) is a measure of the width of the surface at
time t on a length scale L, and tL —L' with z =a/p. The
results of dynamic RG and various growth models" are
consistent with each other in d=2 giving a=

& and

P =
3 . There are not exact results in d ) 2, but on the

basis of numerical evidence alone, Kim and Kosterlitz'
have suggested a =2/(d+2) and P =1/(d+ 1). In d =3
the Kim-Kosterlitz exponents are close to the values ob-
tained by numerical solution of the KPZ equation.

We assume that at long times t» ti, and averaged
over length scales l, the typical magnitude of the fluctua-
tions in the interfacial height scale as ([h(r+l, t)
—h(r, t)] )/ —hp, and that at long times these fluctua-
tions last for times of the order ti. Then, apart from the
noise, for times t» ti and averaged over scales l, the
various terms in the KPZ equation may be estimated
as (~8h/Bt ))/ —h//t/, v(~V h ~)/ —vh//I, and (X/2)
x((Vh)'), -~hP/l'.

To proceed further we need to estimate the average
noise on these length and time scales. For white noise we
estimate its mean-square fluctuations on length scales l
and time scales t/ as r// —(D/S/t/) '/, where S/ is the
average surface area of the interface on length scales l.
This is a simple consequence of adding uncorrelated ran-

This suggests that modified and generalized versions of
the type of scaling arguments introduced by Kolmo-
gorov'' in the context of the inertial range of three-
dimensional homogeneous turbulence and extended to
the study of fractally homogeneous turbulence ' by
Hentschel and Procaccia ' ' might be useful as a
method to identify the diA'erent scaling regimes observ-
able in open dissipative systems.

Basically for any equation such as Eq. (1) to show
scaling each separate term (including the noise), when
coarse-grained over length scales I, must be of the same
order of magnitude or negligible. Only under these cir-
cumstances can scaling behavior arise. The validity of a
scaling regime can be then found in a self-consistent
manner from the region of length scales over which the
intrinsic assumptions apply. The art, as in Flory theory,
lies in estimating the magnitude of individual terms,
especially as, in general, we are dealing with self-a%ne
and/or anisotropic systems, which introduces several
length scales into the estimate. We illustrate the ap-
proach by a few examples. Clearly, the range of applica-
bility of this approach goes well beyond these examples.

Interface growth, KPZ equation The fi.
—rst open sys-

tem we examine is noise-driven surface growth, which is
expected to be described by the KPZ equation (1). Re-
cent interest in the growth of surfaces has resulted in the
recognition that several models for such growth on inter-
faces of dimensions I." ' all obey a form of dynamic
scaling: '

t~ if t &&tL,

dom variables. We estimate the surface area of the
growth on length scales l as S/ —(hP+l ) ', and
consequently for smooth surfaces )I/ —(D/I" 't/) '/,
while for rough surfaces g/ —(D/h/" 't)) '/ .

To derive the Kim-Kosterlitz exponents we assume
that at sufticiently large length scales l» l;„, the non-
linear term in the KPZ equation will dominate the sur-
face diA'usion. The regime where this assumption is val-
id is defined by h/» v/) . Equating the Bh/Bt term with
the nonlinear term implies that a typical fluctuation lasts
for time t/ —l /Xh/. The scaling behavior of these two
terms implies a+z =2.

Equating our estimate for the noise fluctuation in a
rough interface h/» l (a condition yielding an outer
length scale l,„,) to the inertial term then yields

(D/)„) 1/(d + 2 )l 2/(d + 2 ) (4)

and consequently a =2/(d+2) in this regime. The inner
length scale l;„—(v"+ /DA, +') '/ can now be found by
inserting Eq. (4) into the self-consistency condition
h/» v/k. We can find the scaling behavior of h, with
time t at short times be reexpressing h~ in terms of t~ and
assuming scaling is valid for t « tI with the result

D 1/(d+1) t 1/(d+I)
I (s)

and therefore P =1/(d+1).
Thus, we have derived theoretically the expressions

conjectured by Kim and Kosterlitz' for a and p on the
basis of numerical results, as well as their fluctuation
amplitudes and inner length scale I;„. The outer length
scale can be found by substituting Eq. (4) into the cri-
terion for the existence of a rough interface yielding l,„t—(D/k) '/, and this expression implies that we may ex-
pect to observe the exponents only in models in the
strong-coupling limit where the dimensionless parameter
e=—k 'D/v»1 which is analogous to the Reynolds
number describing hydrodynamic turbulence.

If e«1, it is also possible to And a regime where the
Edwards-Wilkinson exponents' ' are valid, with

h/ —(D/v) ' l

and consequently a =(3 —d)/2, while

(D 2v1 —d) 1/4t (3 —d)/4 (7)

and thus p =(3 —d)/4. These exponents are perhaps less
interesting than the Kim-Kosterlitz exponents as they
can be derived exactly from the linearized version of the
KPZ equation; however, they also show the generality of
the scaling arguments applied and can also be used to
study crossover between regimes.

Medina et al. and Zhang ' consider a generalization
of the KPZ equation for interfacial growth in which the
noise in Eq. (1) instead of being 8 correlated in space
has the correlation function

( ())r, t) ())r', t')) =D'~r —r'~ " ' "I')(t —t') .

1983



VOLUME 66, NUMBER 15 PHYSICAL REVIEW LETTERS 15 APRiL 1991

We expect the eA'ect of long-range correlations in the
noise to change our estimate of the noise fluctuation
averaged over length scales l and time scales tI into gI—(D h/

p ' /t/) '/. As all other relationships remain
unchanged, the behavior of hI and h, can immediately be
found with the result

(D&/y) I/(2+d —2p)1 2/(2+d —2p)

and therefore a =2/(2+d —2p), while

(D&t ) I/(I+d —2p)

(8)

where

Again neglecting the diA'usion term as small at large
enough length scales and equating our estimate for the
time variation in the height fiuctuations () Bh/Bt ))/ —ht/t/
to our estimate for the nonlinear term (A/2)V (Vh)
—A, h//1 in Eq. (10) yields the identity a+z =4, while

the estimate for the noise (D/1 +'tl ) '/ yields

and consequently a =(3 —d)/3 with d, =3, and

(Dg 2) —I/31 (9+d)/3 (12)

and consequently z =(9+d)/3 in this regime. These re-
sults are in agreement with SGG.

Self organized criticali-ty. —As another example, con-
sider the current fluctuations and avalanches in a flowing
sandpile. Hwa and Kardar introduced another driven

Langevin equation incorporating the symmetries and
conservation laws of the Bak, Tang, and Weisenfeld
discrete sandpile model for self-organized criticality. As
the sand has a macroscopic flow direction, the resulting
equation,

8h/Bt = vIIBI[ h+ v V h (k/2) BIIh + ii(r, t), (13)

is anisotropic; the noise due to the added sand grains is
taken to be white,

and thus p =1/(1+d —2p). Of course, these results are
only valid for a & 1 and so long as the noise correlation
function decays, and, therefore, only for p & p .,„
=(d —1)/2. Also these exponents can only be expected
in the case of pure colored noise: Any white-noise con-
tribution will lead to crossover efI'ects.

Surface growth with conseruation law. —The KPZ
equation does not conserve the total volume of the inter-
face in the absence of external forcing. In order to study
this conservation law on interfacial growth Sun, Guo,
and Grant used the dynamic renormalization group to
study the nonlinear Langevin equation

Bh/Bt = —V [vV h+(A/2)(Vh) 1+rt(r, t), (10)

Again in this model the dynamic exponent z, and the
roughening exponent e, can be found. But in this case
because the problem is both self-aftine and anisotropic,
there are three length scales rather than two involved in
the analysis; thus if I is a typical scale to be studied
along the flow direction, then associated with this paral-
lel length scale is a transverse length scale I& —l~, where

g is the spatial anisotropy exponent, and again we call a
fluctuation in the sandpile height on these scales hI. Us-
ing these three length scales, the various terms in Eq.
(13) can be estimated as ()Bh/Bt))l —h//t/, VII()BIIh))/—VIIh//1, v ()V h))/ —v ht/1, and (k/2)&) BIIh '))/
—Xh //l. Estimating the area of the sandpile surface on
length scales I to be S~-Il& gives a noise estimate
tt/ —(D/ll & tt) ' . Neglecting at large length scales the
parallel component of sandpile relaxation through sur-
face tension compared to the para11el nonlinear transport
term yields the exponent equalities

(D /v2) I/31(5 —d)/3

and consequently a = (5 —d )/3 with d, =5, and

(D«2/vd —
I ) I/6t (6 —d)/6

(14)

(15)

which implies p =(5 —d)/6 in this regime. Similarly, for
e)) 1, we find a =(5 —d)/5 with d, =5, and P =(5 —d)/
(d+5) when /»ht, and for rough surfaces we find

a =4/(d+4) and p=2/(d+2) with no upper critical di-

mension. As far as we know these results are new and
have not been studied before either analytically or by
simulations.

a —z =a —2(=2a —1=—[z+1+(d —2)g]/2,

which can be reexpressed as z =6/(8 —d), a=(2 —d)/
(8 —d), and /=3/(8 —d) in agreement with Hwa and
Kardar. " More fully, we find t/ —(vf /D X ) '/(

&(16/(8 —d) h (D 2) d —
4/ d —2) I/(8 —d)1 (2 —d)/(8 —d)

( 3/D) 2) I/(8 —d)13/(8 —d)

Surface growth with quenched randomness So fa.—r
we have been considering white or colored noise. It is
also possible to use this approach to study the influence
of quenched random noise on growth far from thermal
equilibrium. Fluid flow in porous media is one possible
example of surface growth in the presence of quenched
noise.

Consider the KPZ equation (1) where the noise ri(r, t)
is replaced by the quenched noise r/(r, h) with correlation

(g(r, h ) Il(r', h')) =D"8(r —r') 8(h —h') .

Unlike the original KPZ equation, even when X =0, the
equation with quenched noise is nonlinear due to the
coupling between h and g and cannot be solved readily.
To treat quenched noise we follow the same procedure as
for the KPZ equation, except that we assume q( —(D"/
1 'h ) '/. For e((1, i.e., when the term with ) is negli-
gible, we find
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In conclusion, we have presented a new approach to
the study of the scaling behavior of fluctuations in dissi-
pative dynamical systems. We have illustrated the
method by applying it to a number of systems that have
been investigated recently as well as to the problem of
surface growth with quenched noise. In particular, we
have shown how the expressions conjectured by Kim and
Kosterlitz for the scaling exponents in the KPZ equation
may be derived using this approach. In addition to pro-
viding a method for determining the scaling exponents of
complex nonlinear equations, this approach provides in-

sight into the scaling regimes that can be observed in the
microscopic parameter space of different systems. The
diA'erent scaling regimes manifest themselves in regions
where a particular term in the equation becomes
relevant. The type of arguments used in this approach
are quite similar to those used in Flory theory for equi-
librium systems. Therefore, due to the lack of standard
methods for studying nonequilibrium phenomena, this
approach will be useful in the study of a wide variety of
related problems.
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