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Mean-Field Theory for Diffusion-Limited Aggregation in Low Dimensions
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We present a new mean-field theory for diffusion-limited aggregation (DLA). We apply our approach
to calculate the ensemble-averaged structure seen in recent experiments in a two-dimensional channel
geometry. Our method explains the similarity between the average DLA occupancy and the Saffman-

Taylor finger pattern.

PACS numbers: 68.70.+w, 47.15.Hg, 47.20.Hw

Diffusion-limited aggregation (DLA) is a stochastic
model originally introduced by Witten and Sander! to
describe tenuous structures. In this process, a cluster is
grown via the attachment of random walkers released
one at a time from a far distance. This approach has
been very successful in simulating the formation of struc-
tures seen in electrochemical deposition? and unstable
viscous fingering.>* Unfortunately, a theoretical frame-
work for definitively analyzing simulation results has as
yet proven elusive.

The relationship between DLA and the Saffman-
Taylor viscous-finger problem® was recognized several
years ago.® In the Saffman-Taylor (ST) case, growth is
deterministically controlled by solving Laplace’s equa-
tion for the pressure field; in DLA, the random-walker
probability distribution obeys the selfsame Laplace equa-
tion, but the growth algorithm is intrinsically “noisy.”
Also, it is now understood that in the usual channel
geometry, surface tension plays a crucial role in selecting
the finger pattern and in determining its stability. One
can use a ‘“‘noise-reduced” DLA process which also in-
cludes surface tension to recover the ST ﬁnger;6 howev-
er, the irregular pattern seen in standard DLA (and in
experiments) bears no obvious connection to a stable
finger structure.

Recently, Arneodo et al. discovered a rather surprising
feature of DLA in a channel geometry.” By performing
an ensemble average of the irregular patterns, they ob-
tained the occupation probability distribution. Amazing-
ly, the mean occupancy profile moves at constant speed
and has the shape of the Saffman-Taylor pattern with
finger width A =0.5. This finger width is the selected
structure determined by current theory in the small-
surface-tension limit.> This was found to be true both in
DLA simulations and also in experiments involving un-
stable viscous fingering in a Hele-Shaw cell.

This paper is devoted to providing an explanation of
these results via a new mean-field theory. A mean-field
theory for DLA was originally proposed by Witten and
Sander;? this had the form
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where p and u are the mean densities for “aggregates”
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and “walkers,” respectively, and a is the lattice spacing.
The first equation is just the conservation of matter; the
second equation implies the DLA growing law, i.e., the
aggregates only grow when there are occupied neighbors
and a random walker is available on the site. In an open
space of dimension d (> 2), this model predicts that the
p profile goes like 1/r, where r is the radial coordinate
with the origin at the starting point, and the interface
moves with constant velocity. This can be interpreted as
giving rise to a fractal dimension dr =d — 1.

It is easy to argue that these equations cannot be
correct in a planar geometry. In the limit a— 0, one can
find a similarity solution by writing u and p as follows:

ulx,t)=xglx(.— )1, pCe,t)=x " (xt.—1)) (2)
(t<t.),

where 7. is a finite critical time. Substituting into (1),
the equations for g and f become

—f'=2zg'+zg"=gf, 3)

where z=x(t.—t) and all the derivatives are with
respect to z. The boundary condition for g is that g goes
to a constant go at infinity, corresponding to constant
flux. It is not hard to solve these equations in the follow-
ing two limiting regions: (1) when z>1, f(z)
~exp(—goz), g(z)— go; (2) when z<1, f(z)— fy,
g(z)~z% with a=[(1+4f,)"2—11/2. This solution
shows that the main part of the p profile behaves as
1/x2, a result first pointed out by Hakim.® In a loose
sense, the structure has negative dimension — 1 and the
front goes to infinity in a finite time #z.. A numerical
simulation of Eq. (1) immediately verifies the 1/x?2
power-law behavior and the concomitant interface ac-
celeration. The same behavior will exist in a channel
geometry, since the fields approach planar interface
values sufficiently far in the front of the advancing struc-
ture.

The essential cause for the acceleration of the inter-
face is the finite slope of the u field at infinity. Given
this flux, any small fluctuation in front of the growing
front will start to grow. In the actual DLA model,
growth cannot occur with an infinitesimal fluctuation; in-
stead the cluster must reach a particular point for



VOLUME 66, NUMBER 15

PHYSICAL REVIEW LETTERS

15 APRIL 1991

growth to occur and growth at occupation densities less
than one occupied site must be suppressed. In other
words, there should be a finite threshold in p to initiate
growth, or at least a faster than linear vanishing of the
growth rate at small p. The simplest way to accomplish
this is to replace the first term in parentheses in Eq. (1),
p, by p” with y> 1. [This is certainly not the only way
to introduce a cutoff, maybe not even the most natural
way. However, we have used other types of cutoffs, e.g.,
instead of p?, we have also used the function f(p):
f(p)=0 for p< A; f(p)=p for p> A, where A4 is a
small number. The results we obtained are qualitatively
the same as those quoted here using p”.] It turns out
that the basic physical nature of the model will not de-
pend on y as long as y > 1.

So, the equations of the new mean-field model become

%t)—=V2u=u(p’+a2V2p). (€))
Again, we first consider the 1D planar problem. We re-
scale the problem as follows:

u=a'u,, p=a *p;, x=a'x,, t=a""%,. (5)

Assuming there exists a steady-state solution with veloci-
ty v, we have

—vpi=u; =u,(p{+p1). 6)

The derivatives are with respect to z; =x; —vt;. Using
the boundary condition that p;— 0, u{ — ¢ (c is the flux
of ‘“walkers” fixed in the problem) at z;— oo, and
defining u, =u,/v, we have

wrllpo—u3)"—uy'1=uy , @)

where pg=c/v, with the boundary conditions u,— O,
us— 0 as z;— —oo, and us— pp as z;— . Equation
(7) is a third-order differential equation with three
boundary conditions which is translation invariant; i.e., it
does not contain any explicit dependence on z;. Simple
counting arguments show that Eq. (7) is an eigenvalue
equation for pg, which is the rescaled value of the uni-
form density far behind the growing front. We have
solved Eq. (4) numerically for various y (>1). The
density profiles all have “kink™ fronts moving with con-
stant velocity, and the shape of the profile is time in-
dependent after initial transients, as shown in Fig. 1.
We have also directly solved the eigenvalue equation (7)
numerically, and the values of po agree very well with
the simulation. The dependence of pg on y can be rough-
ly estimated by matching the asymptotic behaviors of the
p and u fields; the result of this is that po~[(y—1)/
(y+1)1g(y), where g(y) is a slowly varying function of
y. As y approaches 1, pg goes to 0, which means there is
no steady-state solution for y=1.

Encouraged by the capability of this model to produce
steady-state growth in 1D, we do the same simulation in
the channel geometry with the boundary conditions in

the y direction: 9u/dy|, = +4/2=0, pl,=+.,2=0. The
structure of the equation makes the simulation quite
straightforward. Given an initial distribution of p, we
can solve Poisson’s equation (V2—p’+a2V?p)u =0; and
from the distribution of u, 8p/d¢ is obtained, and the p
field can be advanced in time. This is exactly the spirit
of DLA: One releases another particle only when the
previous one is absorbed by the aggregate. We also en-
forced symmetry about the center of the channel which
is natural because we are averaging over many DLA
runs.
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FIG. 1. Simulation results for w=20 and a=1. (a) Longi-
tudinal profile of p at the center of the channel; (b) transverse
profile of the normalized density for y=2,4, the dashed line is
the function cos?(zy/w). (c) Contour plot for the normalized
density profile, the levels are 0.25, 0.5, and 0.75 from outer to
inner; the 0.5 contour line is indistinguishable from the ST an-
alytic solution for A =0.53.
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We have performed this simulation in lattices of sizes
20x 100 and 40x 100 for various values of y and a. A
steady-state solution was obtained for all y> 1 and for
all a. Figure 1(a) shows the density field p at the center
of the channel versus the growing direction coordinate x,
for different times. It is obvious from the graph that
growth only occurs at the front, and behind the front, the
density is constant after some initial transient. The
transverse density profile is shown in Fig. 1(b). It has a
maximum at the center and decreases to zero at the
boundary, and the mid-height point is approximately at
the midpoint between the center and the walls. The in-
termediate region between large-occupancy and small-
occupancy regions becomes smaller with decreasing a
and increasing y. Finally, in Fig. 1(c) a contour line plot
for the density field is presented for a =1 and y=2. The
0.5pmax line agrees very well with the Saffman-Taylor
solution for A =0.53. Both the mean occupancy profile
and the transverse profile agree with the aforementioned
experimental findings of Arneodo et al. For smaller a
and larger 7, the 0.5pmax contour lines approach ST solu-
tions with A closer to 0.5.

It has been well-known experimentally'® that the
width of the stable finger in the Saffman-Taylor problem
approaches 0.5 asymptotically as the surface tension goes
to zero. However, it is only recently that it was under-
stood that this phenomenon is due to surface tension act-
ing as a singular perturbation.!! The fact that the
boundary of the large occupancy region in mean-field
theory has the shape of the 0.5 Saffman-Taylor finger
immediately raises the question: Is this behavior related
to the selection mechanism of the Saffman-Taylor prob-
lem?

In order to answer the question, we first consider the
limiting case where y— oo and a— 0. The density field
is divided into two regions: region (1), p=Ap > 1, then
p?— oo, s0 u =0; region (2), p=0, so V2u=0. On the
boundary between the two regions, because of the con-
servation law (8p/8t =V?u), we have Apv,=—n-Vu.
Together with the boundary condition that du/dx — c at
x— oo, the mean-field equations become exactly the
Saffman-Taylor equation at zero surface tension. For
finite ¥ and a, the two regions (¥ =0 and V?x=0) will
be separated by a layer of finite width. Locally the prob-
lem can be approximately treated as a one-dimensional
problem in the local-density gradient direction. Accord-
ing to the scaling in one dimension, the width of the lay-
er is of order O(a?), but because of the 2D nature of the
problem, up to leading order, the Laplace operator v?
equals 92/0n%+x9/0n, where n is the local gradient
direction and « is the local curvature of the front. So
after scaling, compared to the one-dimensional problem,
there are two extra terms, a’xui and a’xpj, present in
the equation. Treating these two terms as perturbation,
one can get effective boundary conditions for the Laplace
equation. These boundary conditions will contain curva-
ture terms and play the same stabilizing role as does the
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surface energy in the ST problem. We therefore expect
that singular perturbation caused by the Laplacian term
will select the shape of the boundary layer to be approxi-
mately the 0.5 Saffman-Taylor finger.

The above argument can be tested by extending our
calculations to the case of additional anisotropy. If the
Laplacian term selects the observed large occupancy
shape, then when anisotropy is introduced into the prob-
lem, the Laplacian term will select not the 0.5 Saffman-
Taylor finger, but another solution of the family.
Indeed, as we replace V?p by 8%p/dx2+b8%p/dy?, the
shapes of the mean occupancy boundary fit very well
with the Saffman-Taylor finger of different widths (Fig.
2), with the selected width A an increasing function of
the anisotropy parameter b. Our result agrees with ex-
periments of Couder et al.,'? where they also observed
the Saffman-Taylor finger with different widths when
anisotropy was introduced; however, a detailed corre-
spondence between the theoretical and experimental
ways of introducing anisotropy is not clear.

The action of the Laplacian in the mean-field theory
as a sort of surface tension can be thought of in the fol-
lowing heuristic way. In a single DLA simulation, a site
which has three neighbor sites being occupied and a site
which has only one neighbor site being occupied will
have the same ability to grow, so there is no surface ten-
sion. In a mean-field theory which is meant to describe
the sum of many single DLA runs, a site which has a
larger neighbor density will grow faster because the
neighbor density consists of occupied sites from different
runs and they do not block each other. Additional
growth probability due to higher neighbor occupancy is
essentially the spirit in which Kadanoff introduced sur-
face tension into DLA simulations.®

As a final test of our approach, we investigate the
dependence of the mean density profile far behind the
front on the channel width w. Because of computer time
limitations, simulations with very large w are not practi-
cal. But by rescaling the problem in the same way as in
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FIG. 2. Contour plots for the anisotropic cases: (a) b=0.5;
the contour line for p(x,y)/pmax=0.25, 0.5, and 0.75 are plot-
ted, and the 0.5 line is fitted very accurately by the analytic ST
solution for A=0.31. (b) »=2; the 0.5 contour line matches
the A =0.65 ST solution.
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FIG. 3. Dependence of p on a?; the plotted fit is p~a®, with
a=—1.26 £ 0.06.

1D, we find
p(x,y,w,a,y)=a " *P,(x/w,y/w,w/a") , 8)

where P, is some function which depends on y. Note
that the channel width provides an extra length. The
average occupancy is defined as

w/2 w/2
5=W—2f_w/2 _w/zpdxdy=a_2S,(co/a’). 9

S, is another function depending on y. This scaling form
allows us to vary a instead of w and from the dependence
of p on a, its dependence on w is obvious. We show in
Fig. 3 the dependence of 5 on a? for y=2, from that we
get p~w#/a®, with p=—0.36+0.03 and ©=1.28
+0.06. The value of u, the roughness exponent, is very
close to the one measured in the experiment. We have
checked that the exponent is insensitive to the value of 7,
at least within the range 1.5 <y <2. This agreement is
somewhat remarkable; it suggests that the mean-field-
theory approach might provide a method for quantita-
tively estimating the DLA fractal exponent, though
perhaps not determining it exactly.

We should point out there is one problem with our
purely deterministic mean-field theory in the channel
geometry. In the experiment, the tip region spreads as
V1, a result which is absent from our simulation. This
difficulty might be resolved by recognizing that the x lo-
cation of the density front is a marginal mode which will
acquire dynamics when fluctuations around the mean
field are taken into account. Exactly how to do this in a
consistent manner will require further investigation.

In conclusion, we have modified the mean-field theory
for DLA growing in low dimension, and derived results

in good agreement with experiment findings. We argue
that the Laplacian term VZp in the growth equation
plays the same role in selecting the shape of the large oc-
cupancy region as surface tension in the problem of
viscous-finger growth. The additional parameter ¥
which appears in the theory should probably be inter-
preted as a cutoff, with the actual DLA answer being
given by the limit y— 1%; whether the different trans-
verse profile seen in the viscous-fingering data could be
explained by having y > 1 is unclear at this point. Final-
ly, we also have applied our model to growth in a two-
dimensional sector geometry and will report the results
elsewhere.
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