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Nature of Coupled-Mode Contributions to Hot-Electron Relaxation in Semiconductors
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The energy flow in a system of hot electrons, hot LO phonons, and a bath of acoustic phonons is stud-
ied using nonequilibrium Green functions. In lowest order, Kogan s formula for the energy-loss rate is

obtained. When coupled modes are included we find, in sharp contrast to Das Sarma and co-workers,
that the energy-loss rate is significantly suppressed by coupled-mode formation and quasiparticlelike
modes do not contribute to the energy-loss rate.

PACS numbers: 72. 10.Di, 63.20.Ls, 71.38.+i, 72.20.Dp

Much experimental ' and theoretical effort has
been directed at the important problem of hot-electron
relaxation in semiconductors. The theory invo1ves a
dificult combination of many-body physics and non-
equilibrium (NE) statistical mechanics. The possible
role of coupled plasmon-phonon modes in the energy-loss
rate (ELR) has to be addressed since light-scattering ex-
periments reveal such coupled modes. Das Sarma and
co-workers were the first to consider this question.
They argued that the electron-hole-like phonons defining
the modes of the coupled system (electrons plus optical
phonons) are responsible for an "orders-of-magnitude"
increase of the hot-electron ELR at low electron temper-
atures. The Fermi "golden rule" for the ELR by one-
phonon processes can be written as a product of the spec-
tral densities for the electron and phonon subsystems,
and the Frohlich matrix element Mq. The spectral den-
sities can be expressed as the imaginary parts of the
electron-density response function g(q, to) and the pho-
non Green function D(q, to). In polar semiconductors
the electron density fluctuations pq and LO-phonon
modes Cq become coupled modes gq and the separate
identities of the two systems with different excitations
become lost. In Ref. 5 a coupled-mode (CM) form for
ELR is proposed by replacing the uncoupled phonon
spectral density by that of the coupled system while

keeping the rest of the golden-rule formula essentially in-

tact. The resulting formula gives an ELR enhanced by
orders of magnitude over the Kogan formula, especially
at low electron temperatures.

It is not evident that the Fermi golden rule remains
valid when coupled-mode eff'ects are introduced, and
hence a more complete NE approach is necessary. The
objective of this Letter is to show that (a) the quasiparti-
clelike CM phonons do not contribute to ELR as they
are effectively at the electron temperature and hence the
orders-of-magnitude enhancement does not occur; (b)
the remaining CM phonons are effectively "hotter" than
bare phonons and hence CM formation suppresses ELR,
and may, in fact, be a source of the "hot-phonon" eff'ect.
The physical picture associated with the analysis given in
this Letter can be clarified by noting that (i) the tradi-
tional Kogan formula predicts an ELR assuming that

electrons and phonons are independent systems with
well-defined temperatures; (ii) Das Sarma and co-
workers introduce the coupled-mode spectral densities
but continue to use the unmodified distribution functions
(Bose factors) and obtain an orders-of-magnitude
enhancement; and (iii) we use the coupled-mode spectral
densities as well as the coupled-mode distribution func-
tions and find no enhancement of the sort obtained by
Das Sarma and co-workers.

The NE problem can be tackled using either Zubar-
ev's approach, or using a diagram method for
Schwinger's closed-time-path Green functions con-
veniently evaluated on a Keldysh contour. In both
methods the system at time t = —~ is in equilibrium.
The NE system is constructed by building up the NE en-

ergy fluxes at time t, say t=0. In either method the
ELR is expressed in terms of a Green function which has
to be identified. Initially we fo11ow Zubarev's approach.
The lowest-order result leads to the Kogan formula usu-

ally derived from the Fermi golden rule. The next level
of approximation is delicate, since (a) when coupled
modes are formed the detailed CM-phonon distribution
function is needed and (b) the modes are already
damped by the ELR process which depends on NE con-
ditions. Hence the random-phase approximation (RPA)
should ideally use propagators containing self-energy in-
sertions.

The hot electrons lose energy mainly by emitting lon-
gitudinal-optical (LO) phonons which decay into acous-
tic (Ac) phonons via anharmonic interactions. The Ac
phonons are at the temperature T of the heat bath.
Within a time scale z„much shorter than a typical LO-
phonon emission time z,p, the electrons reach a quasi-
equilibrium (QE) temperature T, via electron-electron
interactions H„. The time scale zpp for LO-phonon in-
teractions is much longer than z„,z,p, and the LO pho-
nons do not equilibrate to an effective temperature Tp.
However, as in Ref. 5 we assume a Tp and consider only
single-phonon processes. The formal analysis given be-
low is aimed at deriving Eq. (3) for the energy Ilux and
some readers may prefer to go directly to Eq. (3). From
Eq. (3) we obtain Eq. (5) which is the standard Kogan
formula, while Eqs. (6) and (8) are our result inclusive
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of coupled-mode eAects.
The assumption of quasiconserved quantities P„Pp,

and P leads to a simplified Zubarev NE density operator
p(t). It only involves the Hamiltonians H, and Hp and
the energy-flux operators H„Hp. These are given by
H, = —i [H„H] and Hp = —i [Hp, H]. The total Hamil-
tonian H contains H„Hp, H„and the interactions H,p
and H p i.e., electron-LO and Ac-LO, respectively. H„
is included in H, . We neglect the e-Ac coupling and
treat the Ac-LO processes in a simplified manner. The
simplified NE density operator at time t =0 can be writ-
ten as p =pNF = Q

' exp[ —A —8], where Q is the nor-
malization and A is P H +PpHp+P(H —H, Hp). —
Also 8 contains the fluxes. Thus

t 08= —AP, dte"H, APp
— dte"Hp.

Here we have defined AP, =P, —P and Aljp =Pp —P.
For time scales ~ & ~,p the whole system is in quasi-
equilibrium, with the density operator given by

pQp QQF exp( —A ). Since pQE is stationary for time
scales ~& r,p, it is not aA'ected by small perturbations
(to linear order) and, hence, how H;, i.e., H,p+H, „, is

treated in pQq is not important. The NE operator p~q
may be pictured as built up from pQE by switching on the
energy fluxes using a positive infinitesimal e (cf. scatter-
ing theory). The energy flux is now given in terms of
diagonal and nondiagonal fluxes as

(H, ) =dP, J„+AP (J, ,„+J, ,„),
~0 ~ ]J„= dt e" dr H, H, (tr)

4 —oo 40 QE

Similarly J, ,p contains ( H, K,p(tr))QE, where K,p
=——i [Hp, H,p], and J, ,p contains K,p= —i [Hp, H,pl. —
In deriving (1) we used the property that (He)QE and

(Hp)QE are zero, and simplified pNE=Q 'exp[ —& —8]
since the eAect of B containing the fluxes is small com-
pared to that of A. Similar expressions hold for the pho-
non energy flux (Hp).

The electron-LO interaction H,p is QMq(n~pq~m)
x C a a„, where the LO-phonon operator Cq is bq
+b q, and m, n are electron states. The summations
run over all indices. For plane-wave states H,p becomes
QMq(bq+b —q)ak+qak or QMqCqp(k, q), where p(k, q)
or p(n, m) is the electron-hole (e-h) pair operator. The
explicit form of the matrix elements Mq(n~pq~m) is

found in the literature. The electron Hamiltonian H, is

H, +H„and H, is gekai, ak. The e einteraction is g-iven

by —,
' QVqakak+qai, ai, +„, qAO, where Vq is the bare

Coulomb interaction scaled by the background static
dielectric constant. The LO-phonon Hamiltonian Hp is

Pcoq(b„bq+ —,
' ). From Eq. (1), the rate of change of

the electron temperature is written as

dP, /dt =(H, ) [d(H, )/dP, ]

Here only the LO-Ac term is treated via the relaxation
time ~, ,p. This r, p relates to a nondiagonal Onsager
kinetic coefficient if the QE average in J, ,p were re-
placed by an equilibrium average. The term F(J„,J, ,p)
contains the dependence on P„Pp,P and J„,J, ,p as im-
plied by Eq. (1).

Using the explicit forms for H,p, etc. , and using m, n

to stand for k+q and k (also e, for e —e„), the fluxes
can be written in terms of quasiequilibrium Green func-
tions G( —t) defined as G(t —t') =((A,8)) which is

i 0(—t —t ')( [2 (t ),8 (t ') l )QF. The time integration in

(1) picks up the co+is component at co =0.
Finally, the energy flux can be written as

(H, ) =QMqMqe „(1/i) [t:j„=0+;,, (3)

where ik„and iso„are Fermi and Bose Matsubara fre-
quencies, and g (ik„,k) is a zeroth-order electron propa-
gator [Fig. 1(a), dashed line is D ]. Defining hni, q=ni,
—nk+q, where nk is a Fermi occupation number, and

Gkq Gk+ q 6k D 69 —q + Gkq and summing over
i k„,i to„we get An kq [D + —D I multiplied by AN
=N(P', toq) —N(P', eqq) containing Bose factors at the
phonon energy and at the e-h excitation energy. In the
Matsubara method both factors contain P', but when g
is evaluated for the NE system using, say, the
equations-of-motion method in lowest order they come
out with Pp and P„respectively. When the imaginary
part of G is taken in Eq. (4) the k summation can be
carried out to yield the Kogan formula:

ELR =g (dto/tr) toMq
q

x ]—Imp, (q, coq )]ImD (q, co)AN

where the retarded quasiequilibrium Green function f; is
given by ((Cqa a„,Cqa a„)). Here Cq=bq+b q is the
phonon operator and a a„defines an electron-density
fluctuation with energy e „. The electron-phonon matrix
element (for plane-wave states) is M&. The same Green
function arises for the phonon Aux Hp. Also, only the
imaginary part of Kt' contributes to (3). In evaluating I(:

the diagram method can be used where time-ordered,
anti-time-ordered, and distribution Green functions re-
lated to G are needed. Or one may use the equations-
of-motion method where Wick averages have to be ex-
plicitly worked out. However, a full NE treatment will
not be very transparent.

Instead, let us consider the simpler mode/ problem of
evaluating & using the Matsubara method for an equi-
librium system at some temperature I/P'. Then we need
to evaluate the frequency sum

—(I/P') g D'(i c„o,q)g (ik„+iro„,k+q)g'(ik„, k),
i~n~~n

(4)

=F(Jeer Je, ep ) +~Pp/re, ap ~ (2) AN =N(P„co) N(Pp, co) . —
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To study corrections to Kogan's formula we need to
evaluate (5) with improved D(ico„,q) and g(ik„,k). If
we introduce a spectral representation for these we ob-
tain, for the NE problem,

EL R g (dco/n)co M'q

x [—Imme (q, coq )]Im D (q, cu )AN cM,

k+q I
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FIG. l. (a) Structure of I(:, see Eqs. (2) and (3); (b) with
renormalized phonon propagator; (c) with a self-energy inser-
tion having three phonons propagating with an electron.

ANcM =N(P. , cuq) NcM(Pp, P„cu),

where the coupled-mode distribution NgM associated
with the renormalized D(q, co) [Fig. I (b), short-dashed
line] occurs. g(q, cu) is the electron response, preferably
with self-energy insertions. If ANcM is replaced by AN, and g(q, co) by its RPA form we recover the result of Ref. 5.
However, ANcM contains the CM-phonon distribution NcM(pp, p„co~). To appreciate the structure of NcM we note
that for an equilibrium system the dynamic structure factor (DSF), i.e., S(q, co), is related to its distribution function
N(P, co) by N(P, co) = —xS(q, cu)/D2(q, co), where D2 is ImD(q, co). The coupled-mode DSF is a linear combination of
the separate phonon and electron DSFs which are proportional to D2 arid g2. For an equilibrium CM system at
P=P, =Pp, we have NcM =N(P, co). That is, trivially,

NcM(P, P, cu) =[Dz(q, cu)N(P, co)+MPD (q, cu)
~ gz(q, cu)N(P, co)]/D2(q cu),

D&(q, cu) =Dz(q, co)+Mq'~D'(q, cu) ~'g2(q, co) .
(7)

Dq and g2 are the imaginary parts of propagators D and g, while Dq is the numerator of ImD(q, cu). The CM-phonon
distribution function for the NE system is given by

NcM (P, ,P„co)= [D & (q, cu)N (Pp, co) +Mq' ID '(q, cu) I'g, (q, cu)N (P„co)]/D2(q, cu)

and is the obvious generalization of (7). In Fig. 2, top
panel, we show NcM(pp, p„co) for electrons at 50 K, the
lattice at 4 K, and for a wave vector q =0.22x10 cm
as a function of m. These parameters correspond to
those of Ref. 5. It is clear that in the quasiparticlelike
region (co (0.3cuLo) the CM distribution NcM is almost
exactly N(P„co~) and hence ANcM occurring in the
ELR formula is zero, and hence there is no contribution
to energy loss from the QP like CM phono-ns If AN.
were used instead of hN cM as in Ref. 5, one would in-
correctly conclude that an orders-of-magnitude increase
in ELR would result from the QP-like phonons. The
lower panel of Fig. 2 shows the CM-phonon spectral
function at two densities. In Fig. 3 we show the ELR
spectrum for three electron temperatures, ~here the solid
lines correspond to the theory of Ref. 5 [cf. Fig. 6 of Ref.
5(a)], using AN, while the dashed line is from the
present theory, using AN~M. The 4 orders-of-magnitude
diA'erence in the two calculations arises mainly from the
N(pp, co) factor contained in AN which is dominant,
since the lattice temperature is 4 K for all three cases
considered.

The underlying physical picture is that although the
coupled-mode phonon spectral density has some ~eight
in the quasiparticlelike (i.e., electron-hole-like) region of
energies, these coupled-phonon modes are eA'ectively at
the electron temperature and not, as assumed in Ref. 5,
at the lattice temperature. Hence there is no enhance-
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FIG. 2. ToP Panel: iV(P, ) and 1V(Pp) are "bare" electron
and phonon (Bose) distributions, with T, =50 K and Tp =4 K.
The coupled-mode phonon distribution NCM for ~ave vector
q =0.22 nm ' and electron density n, =10' and 10' elec-
trons/cm' (marked em~7 and cmis). Positions of coupled
modes m~ and the plasma frequency co[,] are shown in the ar-
rowed sketch. Bottom panel: Coupled-mode phonon spectral
functions at the two densities, marked 17 and 18. QPL denotes
quasiparticlelike.
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requires the CM distribution functions, the renormalized
propagators, screening functions, etc. The CM-phonon
distribution function shows that the low-energy tails are
eA'ectively at the electron temperature and hence QP-like
phonons do not contribute to ELR. The higher-energy
CM phonons are hotter than "bare" phonons and con-
tribute to a decrease in ELR and may explain some of
the effects currently attributed to hot phonons.

We are grateful to Geof Aers, H. -Y. Chu, and Pawel
Hawrylak for their comments on the manuscript and for
many useful discussions. We thank Jeff Young for many
valuable discussions and for bringing this problem to our
attention in the first place.

0.00 0.25 0.50 0.75
td/Cd

0.0 0.5 1.0 1.5

FIG. 3. The ELR spectrum calculated with hN (solid line)
and with hlV&M (dashed line). 1' axis has arbitrary scale fac-
tors. The solid line is similar to Fig. 6 of Ref. 5(a).

ment. The results of Fig. 2 are for T=50 K, while the
LO-phonon mechanism is most appropriate for higher
temperatures. Nevertheless, as seen from Fig. 2 CM
phonons are hotter than bare phonons and this leads to a
suppression of ELR. This should be considered in all

discussions or simulations of the hot-phonon effect.
For co comparable to QP energies the CM time scale

rcM —1/co is »r, z
—I/coLo. This slow CM process has

to compete with fast (—r,~) ELR-type self-energy pro-
cesses where the electron loses energy via a series of pho-
non emissions before reabsorption of a phonon. One
such process is shown in Fig. 1(c) where three hot pho-
nons propagate with the electron at the time instant cor-
responding to the horizontal dashed line. Many dia-
grams which are zero for equilibrium become nonzero in

the NE picture, and the propagators should include self-

energies prior to RPA summation. A consistent calcula-
tion is a formidable task. ' A crude evaluation shows
that the contribution of e-h-like phonons to the phonon
spectral density is approximately halved when these
effects are included for, say, T, =50 K and n —10'
electrons/cm .

In conclusion, we have studied the ELR for hot-
electron cooling by emission of LO phonons using a NE
many-body approach. The Green functions in the energy
current are identified. Their lowest-order evaluation
leads to the Kogan formula. A higher-order evaluation
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