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Semirigid Supergravity
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We formulate two-dimensional topological gravity starting from local N=2 superconformal geometry.
The theory is free from the very beginning. The usual "twisting" of the N=2 algebra emerges from
symmetry breaking when we expand about a nonzero value for one of the ghost fields. The mysterious
linear term in the supercurrent emerges automatically, as does a full superfield formalism for the whole
system including ghosts. We analyze the moduli space of the "semirigid" super Riemann surfaces asso-
ciated with this theory, including their allowed degenerations.
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Two-dimensional topological gravity still has many
mysterious features. On one hand, it is supposed to be a
cohomological quantum field theory, like topological
Yang-Mills (TYM) theory. From this viewpoint it
makes sense to construct it from a double complex with
differentials Qs and Qt corresponding respectively to a
scalar supersymmetry and the usual Becchi-Rouet-
Stora-Tyutin (BRST) charge of the symmetry algebra of
conformal gravity, in this case the Virasoro algebra.
This approach was followed in Refs. 2-8 and elsewhere.
A related, but distinct, construction obtains the theory
from Chem-Simons theory for the superanalog of
SL(2,R). It seems remarkable that after a rather ardu-
ous gauge-fixing procedure only a very small set of fields
remain in the end, and these are free.

On the other hand, it is by now quite clear that topo-
logical gravity has an intimate association with N=2 su-
perconformal symmetry. The matter systems which can
couple to pure topological gravity invariably seem to
come from "twisting" systems with N =2 supersymmetry
(SUSY). ' ' If this is not an accident then we should
see this symmetry entering in some essential way in the
geometry underlying this system, and, in particular, in
the gravity sector. Indeed there are hints, but they raise
as many questions as they answer.

Verlinde and Verlinde have shown that the same
"twisted" N=2 symmetry algebra just mentioned also
acts on the ghost and Liouville systems of topological
gravity, which are all that remain of the gravity sector
after gauge fixing. But what physica11y is responsible
for this twisting? If only a fragment of local N=2
SUSY remains, what has broken it? Is there another
phase of the theory where this symmetry is not broken?
The question is particularly acute because the twisted
algebra controls even the pure gravity theory; we cannot
appeal to the matter system for help in breaking the
N=2 symmetry. We do not know of another system
where gravity breaks its own supersymmetries, leaving

unbroken the ordinary coordinate group (or its confor-
mal subgroup).

A second question relates to the specific form of the
residual symmetry generators L„G„,and Qs found in

Ref. 9. While L„and Q& are bilinear in fields (like any
Noether charge in free field theory), one sees that to
make the theory work one needs a linear term in 6„. In
Refs. 9 and 15 this term is added by hand, but it should
come out of some symmetry principle. '

Third, in Refs. 14 and 15 an elegant superspace con-
struction was proposed in which matter fields and al-
lowed vertex operators assemble into superconformal
fields. Unfortunately the ghost fields b, P, c, y do not
seem to form superfields, and hence the generators L„,
G„, Qs do not have superfield forms. This seriously lim-
its the utility of superspace; we would like to use super-
contour-deformation arguments and so on. Moreover, it
is hard to see how the ghosts, with the inhomogeneous
transformation law implied above, can be tensors on any
super Riemann surface. These puzzles cast doubt on
whether the supermoduli space corresponding to the
super Riemann surfaces of Refs. 14 and 15 is the right
one to integrate over. The statement that this space was
trivially fibered over ordinary moduli space played a role
in the analyses of Refs. 8 and 15, and so we need to be
sure it is right. In particular, it is crucial to understand
the degeneration of these surfaces.

In this Letter we will address all the above issues. Our
point of departure is extremely simple. We begin with
loca/ N=2 superconformal gravity. ' The correspond-
ing geometry was studied by Cohn. ' We then find a
field in the gravity sector (there is no matter) whose vac-
uum expectation value breaks the full symmetry to the
twisted subalgebra. There is only one field available
which can do this job without spoiling ordinary confor-
mal invariance. We describe the corresponding reduced
geometry, which we have dubbed "semirigid" geometry,
because half of the local N=2 supersymmetries get bro-
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ken down to rigid SUSY. This may seem strange, since
in N=1 there is no such thing as rigid SUSY on an arbi-
trary Riemann surface. In N=2, however, we can con-
sistently attribute spin zero to one supercharge, and
hence give invariant meaning to its zero mode.

Remarkably, many of the mysterious elements of
the complicated cohomological-field-theory construction
emerge automatically in this approach. For example,
both ghost and vertex-operator superfields can coexist in
this geometry. ' And due to the vacuum expectation
value, all the ghost parts of L„, G„, and Qq including the
linear term come directly from the unbroken bits of the
full N=2 stress tensor. We will not inquire into the
dynamical origin of the symmetry breaking proposed
here, however. This question is, of course, the great
mystery of any topological gravity theory. Finally,
we describe some of the main features of the supermodu-
li spaces Af appropriate to semirigid geometry. We will

prove that JR is indeed split (i.e. , trivially fibered) over
the ordinary Af.

Our simple construction thus puts N=2 supersym™
metry at center stage. The cohomological interpretation
is a by-product due to the fact that Qs+Qi happens to
be an invariant, nilpotent operator, where again Qi is
the Virasoro BRST operator. In contrast, TYM theory
has a superspace version where Qq =t)/88 is gauge in-

variant all by itself. ' The difference is as usual that
gravity is not quite a gauge theory; its symmetry genera-
tors get tangled up in spacetime. This di%culty seems
responsible for the complexity of the cohomological ap-
proach to topological gravity.

To get started we recall some N=2 geometry, begin-
ning with a coordinate-invariant definition of N=2 super
Riemann surfaces (SRS). ' An N=2 super Riemann
surface Z is patched from pieces of O' . Generalizing
the N= 1 discussion of Ref. 22 we take 2 to be equipped
with two odd line bundles $,2) L: TZ, and require 2), 2)
each to be integrable: [D,D'] ~D for any sections D,D',
of 2), etc. We also require that [D,D] be linearly in-

dependent of D and D. Then there are local coordinates
z—= (z, O, () such that Dg= |)g+(rl, and D~ =8~—+88, span
2) and 2), respectively. Any other z'=(z', 8', g') are re-
lated by a transformation preserving D and D up to a
multiplier: '

z' =f+ Oap+ (ea+ 8( 6 (ap),
8' =a+ Oa + 8$ 8a,
4'=p+4e —84~p

where f,a, e are commuting functions of z, a,p are an-
ticommuting functions of z, 8 =rl/Bz, and we impose

ea =Sf+a jp+p|la.
Thus there are two independent even and two odd sets of
symmetry generators, the usual I„,J„,G„,G„.

Under these superconformal transformations we get

[.. .,] =., av, »-av, + —,
' D. , D.,+ ,' D—., D., (2)

Finally, computing the Berezin determinant of (1) shows
that the volume form dz—= [dz~dOd(] is invariant Th. us
the integral f dz sets up a Serre duality between (p, q)
tensors and ( —p, —q) tensors, unlike N=0 or 1.

The C ghost is always determined by the group of al-
lowed coordinate transformations, so we have C=C'(z).
The stress tensor and B ghost are always dual to v, so
8=8, (z), T= T, (z). —We will choose to expand these
fields as

C' =c'+ Oy~+ g y + 8(c,
8, =b, +Oj „—gP, , Og(b„—+B,b, ),
T, =J, + OGg, —(G(, + 8([(Te)„+t),J, ] .

(3)

These peculiar linear combinations will be useful mo-
mentarily. The operator products of the component
fields yield

8(zl)C(z2) =8|2(12/z~z =C(zl)8(zq),

~here

z|2=z i
—z2 —81(2 —

g&Oz,

4|&=(1 42

are elementary translation-invariant functions. ' The
ghost stress tensor can be constructed by the method of
Ref. 23: demanding that [T[v],P] =X,, P for P=B, C,
and X the Lie bracket implied by (2) gives

T =a(CB) —,
' (DBDC+DBDC) —. (4)

We now explore how to break this large symmetry.
Suppose that instead of asking Dz ~ D& we require D&
=Dz. In other words, we require that 2) be trivial, and
a global section D be given. (Note that this precludes
twisting in the sense of Ref. 18.) ln N=1 such a con-
straint would break us all the way down to rigid Poincare
SUSY. Now, however, we find merely that in (1) we
need a=const, a=1. Infinitesimally this says that Dv
—=const. Examining (1) we see that it now makes sense
to attribute spin 0 to 8 and spin 1 to (. Thus in (3) the
only Bose field whose vacuum expectation value can
break N=2 in this way is y . More invariantly we break

Dg=(DgO')Dg and D~ =(D~g')D&, which define the tran-
sition functions of the bundles S,2). Henceforth a sec-
tion of X) " will be denoted by a component function
with n raised 8 indices, etc. A 8( index pair will be
rewritten as a z index. Infinitesimal superconformal
transformations are generated by

V, , = vtl, + —,
' (Dv)D+ —,

' (Dv)D,

where v =v'(z) is an even tensor field. We find [V
~

V p]= V~., . ..~, where
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z' =f(z)+ Op(z),

0'=0,

g'=p(z)+&Sf(z) —8&8p(z) .

(6)

Infinitesimally this means Dv =0 or v'=vp+Ov'+8(
x|1,vp and the desired dimension follows. We next note
that since the bundle SL:TZ is integrable, we can reduce
to a manifold with coordinates z~8 by modding out the
flow of D. The transition functions then reduce to

z'-f(z)+Op(z), 8'=8. (7)

Conversely, given patching functions of the form (7) we
uniquely get a SSRS. Then, e.g. , any scalar function

f=f+Op lifts uniquely to the chiral superfield F(z)
=f+28&+8(rlf. Similarly we may instead mod out by
the liow of D, reducing (6) to the form given in Ref. 14:

z'=f(z), g'=Sf(z)+p(z) . (8)

Again any set of transition functions of this form induce

N=2 by the constraint

DC—:q or y =q, c =Bc.

Since D~C ~ is a section of 2) we again supplied a trivial-
ization. q is some constant.

One readily finds the unbroken generators to be the
modes L„, G„, Gp of Tg, G, G in (3), and these obey the
required "twisted N=2" algebra by virtue of (2). Sub-
stituting (5) into (4) we find

T = —2b6c —(Bb)c —2PBy —(BP)y,

G = —2P Bc —(tlP)c+ —,
' qb,

Qs=2Gp=ftyb.

Choosing q = —2 yields the formulas of Ref. 15 after
some trivial changes of notation. Note that we did not
constrain the 8 field at all. The unfamiliar new com-
ponents b, p simply dropped out of the expressions for
the unbroken charges; they remain in the other charges,
which, however, are not symmetries. Nevertheless, we
cannot represent the BC system by ordinary superfields
on any 1~1 superspace.

Because Qs has nontrivial commutator with Gp we
cannot regard it as a global charge, any more than Lo is
global on an ordinary Riemann surface. However, the
combination QT=Qs+Qv does commute with the un-
broken charges, and so defines the global nilpotent
charge needed to get a topological field theory. '

Let us turn to the moduli of semirigid super Riemann
surfaces, or SSRS. We find the moduli by examining
the Cech cohomology of the allowed coordinate transfor-
mations (see, e.g. , Ref. 25). Since we want the dimen-
sion of moduli space to be 3g —3~3g —3, we further re-
strict (1) to a =0, a =1:

z =u '(q+gb), 8=/. (9)

For these assignments to make sense we need to know
that the three-punctured sphere is rigid. This follows
from the observation of a 3

~
3 parameter group of sphere

automorphisms:

(a+ Oa)z+ (b+ OP)
(c+Oy)z+ (d+86) '

where we may take d =1, 8=0. Note that (9) is of this
form.

Now that we know the moduli space one can elaborate
the full machinery of constructing the superoperator for-
malism and the string measure for the insertion of weak-
ly physical states. ' Alternately one may try to covari-
antize the vertex operators by inventing a Liouville sec-
tor as in Ref. 9.

We have provided a concrete framework for d =2 to-
pological gravity by starting with local N=2 supercon-
forrnal gravity. This system is not conformally invariant
by itself, but it becomes so once we drop the modes c, y
fixed by a symmetry-breaking constraint. Thus the bro-
ken theory requires no Liouville sector. Indeed it is born
free, rather than appearing interacting at first and mys-
teriously becoming free after gauge fixing. The system
has a global nilpotent charge and hence is topological. It
explains why the appropriate matter systems always
seem to have twisted N=2 SUSY, and other mysteries
as well. It also urges us to ask about the bigger mystery

a unique SSRS by substituting f,p into (6). The rela-
tion between (6), (7), and (8) is preserved under compo-
sition of maps. Thus (6), (7), and (8) all define exactly
the same moduli space.

Writing any of (6),(7),(8) as z; =Fp (z~), we see that
the condition Fk Fkj Fj implies

f~ =fr, of),
pk =(~fklofj) p +uk of .

These say that (f~1 define an ordinary Riemann surface
while (p;~l define a cocycle in its tangent space. Hence it
makes sense to choose f~ to depend only on the commut-
ing moduli, and pI, ; to be linear in the anticommuting
moduli, in contrast to the situation in N=1. This in turn
implies that the moduli space JR is split over Af„at least
away from the boundary; details will appear elsewhere.

The correct notion of puncture on any sort of SRS is
that of a divisor of codimension 1~0 obtained from z by
some allowed coordinate transformation of the disk.
In the language of (7) we find divisors of the form
z zp 88p, yielding 1

~
1 new moduli for a total of

3g —3+N~3g —3+N if there are N punctures. Count-
ing then shows that the correct plumbing fixture for de-
generation of SSRS must have 1 ~1 pinching parameters,
similarly to spin pinches in N= 1 (but unlike super
pinches). The correct choice turns out to be to join the
z

~
8 plane to the u ~g plane via
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of the dynamical origin of such a symmetry breaking.
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Note added. —Recently, we have found that the pas-
sage from Eq. (6) to (8) is a special case of a construc-
tion given by Dolgikh, Rosly, and Schwarz. The
geometrical framework given in this paper can be used to
derive recursion formulas such as the dilaton equation,
again without recourse to any Liouville sector. '
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