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Experimental Confirmation of the Scaling Theory for Noise-Induced Crises
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We investigate experimentally the scaling of the average time r between intermittent, noise-induced
bursts for a chaotic mechanical system near a crisis. The system studied is a periodically driven (fre-
quency f) magnetoelastic ribbon. Theory predicts that for deterministic crises where r scales as
r —If f, l

" (f—(f„f=f, at crisis), the characteristic time between noise-induced bursts (f~ f,)
should scale as r —cr "g(lf f, I/cr), w—here cr is the noise strength and y is the same in both cases. We
determine y for the low-noise ("deterministic") system, then add noise and observe that the scaling for r
is as predicted.

PACS numbers: 05.45.+b, 05.40.+j

In dissipative, nonlinear dynamical systems it is often
found that small changes in a system parameter lead to
sudden changes in chaotic attractors. This phenomenon,
termed crisis, ' has been observed experimentally in a
number of systems. Theoretically, a crisis occurs
when, as a system parameter f reaches its critical value

f„ the chaotic attractor collides with the stable manifold
of an unstable periodic orbit; if the unstable orbit lies in-
side the attractor's basin of attraction, the characteristic
change in the attractor is an increase in size. After the
crisis, orbits of the dynamical system typically move
chaotically for a time as though on the smaller, precrisis
attractor, then burst into chaotic motion over a larger re-
gion of phase space, then return to the region of the
smaller attractor, and so on. Such crisis induced inte-r

mittency has an associated characteristic time z, the
average time between bursts. For a large class of low-
dimensional systems, and for f just past its critical value,
the characteristic time r is predicted to have a power-law
scaling,

This scaling behavior has been observed experimental-
ly 3,4

In a deterministic system before crisis (f&f, by con-
vention in this paper), the characteristic time is infinite,
because the system trajectory remains forever on the pre-
crisis attractor. However, if some random noise is added

to the system, there is the possibility that the noise will

kick the trajectory across the stable manifold of the un-
stable orbit with' which the attractor collides at f=f, .
Then the trajectory will be similar to an orbit of the
post-crisis system; for example, if the deterministic,
post-crisis (f(f,) system exhibits intermittent bursts,
so will the noisy, f&f, system, and there will be a
characteristic time between bursts r. Specific examples
of such noise-induced crises have been studied numeri-
cally and analytically. ' Theory shows that for deter-
ministic crises where r scales as in Eq. (1), the charac-
teristic time for the noise-induced crisis scales as

(2)

where o. is the strength of the noise, g is a nonuniversal
function depending on the system and on the distribution
function of the noise, and y is the critical exponent of the
deterministic crisis. Because real physical systems are
always accompanied by noise, these considerations are
an important complication to the experimental investiga-
tion of transient chaos and crisis-induced intermittency.
We have observed noise-induced intermittent bursts in a
variable-noise, nonlinear mechanical system, and have
for the first time confirmed experimentally the applica-
bility of scaling law (2) to a physical system. We calcu
late the critical exponent y for the f(f, system, using
three operationally independent means that produce re-
sults in good agreement, and sho~ that the characteris-
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&(t) = g ak [0(t —krit) —0(t —(k+ I )6t)],

where 0 is the unit step function, Bt is an update interval,
and the aI, are independent, zero-mean Gaussian pseudo-
random variables with variance n, . The update interval
Bt =0.01 s, which is much less than the ribbon's mechan-
ical response time of 1.2 s (1/e decay of the ribbon's
response to a step change in dc magnetic field). The di-

gitally produced pseudorandom variables aj, passed stan-
dard statistical tests for independence and distribution.
These conditions guaranteed that g(t) closely approxi-
mated Gaussian white noise. The ribbon is made from a
new class of amorphous materials that exhibit very large
reversible changes in their Young's modulus E with the
application of a small magnetic field (inset, Fig. 1). The
oscillating magnetic field changes the stiA'ness of the rib-
bon, which therefore buckles to a correspondingly
greater or lesser degree. The degree to which the ribbon
is buckled is measured by an MTI Fotonic sensor near
the base of the ribbon. Additional details of the ap-
paratus are discussed in Refs. 9 and 10. The sensor out-
put, monotonically related to the ribbon curvature, was
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I IG. 1. Experimental setup. Inset: Ratio of Young's
modulus F of the ribbon to zero-field modulus Eo vs applied
magnetic field.

tic time for the f&f, system is consistent with a single
function g ouer a wide range of o and f f—,, when y is
used to scale the results as in Fq (2)..

The experimental system was a gravitationally buck-
led, amorphous, magnetoelastic ribbon (transversely
annealed FeslBt3ssi3qC2, 3 mm&&65 mmx25 pm),
clamped nearly vertically at its base (the ribbon buckled
preferentially to one side), and driven parametrically by
a time-varying component to an applied magnetic field
(Fig. 1). The time-varying component had both a
sinusoidal and a random contribution. The random com-
ponent was given by

used as the single measured dynamical variable in the
experiments. The rest of the system's phase portrait was
reconstructed by delay-coordinate embedding. ' ' The
sensor output-voltage time series was V; = V(t, ) (t; =inst,
i =1,2, 3, . . . ; /t. t =1/f, the forcing period). This choice
of h, t was made to obtain a stroboscopic Poincare section
in a (d+1)-dimensional continuous-time phase space.
For su%ciently large d, this choice of h, t induces a
discrete d-dimensional map x;+l =F(x;) for the system,
where x; =(V;, V;+ l, V;+2, . . . , V;+d). It should be noted
that a complete model of the ribbon's behavior requires a
partial diff'erential (i.e., infinite-dimensional) equation.
It is therefore noteworthy that essential features of the
ribbon's dynamics can be captured in a low-dimensional
mapping, as has been shown previously.

We observed that for an imposed magnetic field H
=Hd, +H „sin(2rr.ft) (where Hd, =0.82 Oe and H
=2.05 Oe), as f decreases through about 0.97 Hz, the
"deterministic" ((=0) system undergoes a crisis. Before
the crisis, the system state moves chaotically on a
strange attractor [Fig. 2(a)]. After the crisis [Fig.
2(b)1, the attractor is much larger. The dynamics dur-
ing the bursts is more complicated than that between
bursts. However, the part of the attractor corresponding
to the precrisis attractor (the core) is adequately repre-
sented in a two-dimensional phase space. Turning on the
noise term ((%0) produces orbits much like those of the
post-crisis system, even for f& f, [Fig. 2(c)l.

The scaling exponent y of the deterministic crisis was
calculated in three operationally independent ways.
First, y was determined by measuring the characteristic
time between bursts r as a function of f f„and fitt—ing
the results with Eq. (1). Estimates i of r were obtained
from 3-h time series recorded for closely spaced values of
f near the crisis (r" is measured in forcing periods of the
sinusoidal magnetic-field component). The theoretical
scaling law (1) for r assumes that the system is deter-
ministic; for such a system, the characteristic time goes
to infinity at the crisis. Real systems, which are always
accompanied by noise, show a finite characteristic time
at f=f, as is evident from Eq. (2). The presence of re-
sidual system noise, even with the a; set to zero, made
determining the value of f, more complicated than in an
ideal system, and somewhat limited the accuracy with
which it could be determined. The value of f, for this
crisis was determined by minimizing the degree to which
a plot of i vs ln(f, f ) deviated from a str—aight line, us-

ing data taken not too near f, [where noise strongly
aff'ects the applicability of Eq. (1)]. Given f„y was
determined from the best nonlinear least-squares fit of
the functional form z"=k(f, f) ' to the —data. The
statistical estimate of the critical exponent using this
method is y = 1.12 ~ 0.02.

A second determination of y was made by considering
the accumulation of probability measure at the edge of
the attractor. The theory leading to scaling law (1) as-
sumes ' that the measure p of the attractor within ~ of



VOLUME 66, NUMBER 15 PHYSICAL REVIEW LETTERS 15 APRIL 1991

Ov
0

6r

3—

0+
0

(b)

:l

5—

f=0.9760 Hz
=0

I I

f=0.9630 Hz
=0

V,

f=0.9760 Hz

4M; &/0~=1.26 x10

its edge accumulates as p(s) —s~. Using a trajectory of
several hours duration recorded for f just above f„ the
iterates were sorted in magnitude, and an estimate of
p(s) was obtained as a cumulative count of the number
of iterates within s of the maximum iterate. The slope of
the straight-line portion of a plot of In[p(e)] vs In(e)
produced an estimate of y=1.08 4 0.05.

Final determination of y resulted from the observation
that the crisis shown in Fig. 2 is a homoclinic tangency
crisis of a two-dimensional map. Careful observation of
the system state just before a burst indicated that system
trajectories closely approached a period-three orbit [the
elements of which are indicated in Fig. 2(a)] before leav-

ing the core attractor. Crises in two-dimensional maps
are limited to two varieties, depending on whether the
mediating periodic orbit is on the attractor before
(heteroclinic) or only just at and after (homoclinic) the
crisis. ' The absence of a period-three orbit on the at-
tractor before the crisis means that the crisis is of the
homoclinic type. The theoretically predicted critical ex-
ponent for a homoclinic tangency crisis is given ' by
y =log ~ p2 ~/2 log ~ p ~ p2 ~, where p ~ and p2 are the expand-
ing ((p~ ) ) I) and contracting ((p2( ( I) eigenvalues, re-
spectively, of the periodic orbit. Using portions of a sin-

gle trajectory passing near the period-three orbit, we
were able to estimate the eigenvalues p1 and p2, and,
consequently, the theoretically predicted exponent, y
=1.07+ 0.15. These three estimates of y are statistical-
ly consistent, and yield an overall, weighted value of
y=1.11 ~ 0.02.

The residual system noise mentioned above (resulting
from mechanical vibrations and imperfections in the
operational amplifier) must be taken into account when

applying Eq. (2), in which the strength a of the total
noise experienced by the system appears. We allowed
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FIG. 2. Delay-coordinate embedding of time series taken
(a) before and (b) after the crisis. The time delay At is I/f,
the stroboscopic sampling period. The core attractor of (a) is

enlarged by burst dynamics in (b). In (c), the parameter is

held at the same value as in (a), but the variable noise is on.
The noise produces burst dynamics similar to those seen in (b).
The small crosses in (a) indicate the elements of the period-
three unstable orbit that mediates this crisis.
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FIG. 3. Measured standard deviation of the iterate sequence
V; as a function of the strength of the added noise. Here, the
system's attractor is a stable periodic orbit. The curve shows
the best fit with the sum-in-quadrature model o v =k (o8
+ o2) I/2
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FIG. 4. Characteristic times for noise-induced bursting. (a)
Range of raw data. Scaling of Eq. (2) is applied in (b), using
deterministic critical exponent y. Data collapse onto a single
curve, giving graph of function g in Eq. (2). Error bars indi-

cate 67%-confidence intervals. Note that the smallest value of
p/Ha„corresponds to residual system noise alone.

for this fact as follows. When the system was operated
at a different set of parameters (Hd, =0.22 Oe, H„
=2.05 Oe, f=0.95 Hz, g—:0) it was noted that the at-
tractor was not chaotic, but rather was a stable periodic
orbit. The sequence of iterates V; had a Gaussian distri-
bution, due to the system noise, with a standard devia-
tion o.z of about 5 mV. Spectral analysis of the sensor
output voltage V(t) showed a broadband component
even for "periodic" ribbon motion, indicating an approxi-
mately white Gaussian process for the residual system
noise. As the variable noise was increased (g&0), the
distribution of V; remained Gaussian, but broadened. As
shown in Fig. 3, the efI'ect of the variable noise on the
system state was well described by an additive variance

model, consistent with the residual system noise and the
variable noise being independent, white Gaussian pro-
cesses. In testing the applicability of Eq. (2), we used an
effective noise strength a = (ati+ a, ) 't, where the resid-
ual system noise was determined from the fit in Fig. 3 to
be an/H„=3. 68x 10

Figure 4(a) shows the characteristic times i estimated
from data runs taken at a wide variety of noise and (pre-
crisis, f)f,) parameter values. In Fig. 4(b), the scaling
indicated by Eq. (2) has been applied, using the critical
exponent determined for f (f, and ak=0. The widely
dispersed data of Fig. 4(a) now collapse onto a single
curve, which gives the graph of the function g in Eq. (2)
for this system. This consistency strongly supports the
theory underlying scaling law (2).

J.C.S. was supported by the U.S. Air Force Ofhce of
Scientific Research. Additional support was provided by
the U.S. Office of Naval Research (Physics Division),
the U.S. Department of Energy (Scientific Computing
Staff Office of Energy Research), and the U.S. Naval
Surface Warfare Center Independent Research Pro-
gram.

'C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 48,
1507 (1982); Physica (Amsterdam) 7D, 181 (1983).

2C. Jeff'ries and J. Perez, Phys. Rev. A 27, 601 (1983); S. K.
Brorson, D. Dewey, and P. S. Linsay, ibid 28, 120. 1 (1983); H.
Ikezi, J. S. deGrasse, and T. H. Jensen, ibid 28, 1207 .(1983);
E. G. Gwinn and R. M. Westervelt, Phys. Rev. Lett. 54, 1613
(1985); D. Dangoisse, P. Glorieux, and D. Hannequin, ibid 55, .
746 (1985).

R. W. Rollins and E. R. Hunt, Phys. Rev. A 29, 3327
(1984); T. L. Carroll, L. M. Pecora, and F. J. Rachford, Phys.
Rev. Lett. 59, 2891 (1987); W. L. Ditto et ai. , ibid 63, 923.
(1989).

4J. C. Sommerer, W. L. Ditto, C. Grebogi, E. Ott, and M. L.
Spano, Phys. Lett. A 153, 105 (1991).

5C. Grebogi, E. Ott, F. Romeiras, and J. A. Yorke, Phys.
Rev. A 36, 5365 (1987).

C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 57,
1284 (1986).

F. T. Arecchi, R. Badii, and A. Politi, Phys. Lett. 103A, 3
(1984); R. L. Kautz, J. Appl. Phys. 62, 198 (1987); P. D.
Beale, Phys. Rev. A 40, 3998 (1989).

~J. C. Sornmerer, E. Ott, and C. Grebogi, Phys. Rev. A 43,
1754 (1991).

H. T. Savage and C. Adler, J. Magn. Magn. Mater. 58, 320
(1986); H. T. Savage and M. L. Spano, J. Appl. Phys. 53, 8002
(1982).

'nH. T. Savage et al. , J. Appl. Phys. 67, 5619 (1990).
''F. Takens, in Dynamical Systems and Turbulence, edited

by D. A. Rand and L.-S. Young (Springer-Verlag, Berlin,
1980), p. 366ff; N. H. Packard et al. , Phys. Rev. Lett. 45, 712
(1980).

' W. L. Ditto, S. N. Rauseo, and M. L. Spano, Phys. Rev.
Lett. 63, 3211 (1989); W. L. Ditto et ai. , ibid 65, 533 (1990). .

1950


