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Mixing Effects in the 4 + B — 0 Reaction-Diffusion Scheme
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We study analytically the irreversible reaction A+ B— 0 under laminar stirring, for equal overall par-
ticle concentrations. In contrast to the usually found algebraic decays, here the reactant concentrations
display exponential patterns, which stem from the mixing kinetics. The crossover from this short-time
behavior to the classical kinetic law in a fully mixed system is also investigated. Furthermore, disorder
effects are fundamental, since for strictly regular patterns the short-time decay shows an exponentially

exponential time dependence.

PACS numbers: 82.20.—w, 05.40.+j

In recent years diffusion-controlled reactions have re-
ceived much attention, triggered by the realization that
often the decay laws deviate quantitatively from the
chemical-kinetics forms. Thus for the 4+ B— 0 reac-
tion with equal numbers of 4 and B particles the kinetic
scheme predicts at long times a ¢ ~! behavior, while more
consistent theoretical approaches and numerical simula-
tions find (in the absence of stirring) more general pat-
terns, such as a  ~9/% law (where d is the spatial dimen-
sion), a fact due to the random fluctuations in the parti-
cle distribution.!'™® The usual assumption is that under
vigorous stirring the standard classical kinetics should
again apply. In this Letter we show that the situation is
not so simple in that stirring does not necessarily lead to
algebraic decay.

Here we mimic stirring by laminar mixing models.
Basically, mechanical mixing of two initially separated
liquids often produces a quasi-one-dimensional lamellar
structure.””® Thus the irreversible 4+B— 0 reaction
was investigated in Refs. 10-13 by first creating the stri-
ation pattern and then letting the reaction develop. Us-
ing Ranz’s methods'* we solve here the problem of
simultaneous reaction and mixing by using so-called
warped-time transformations. Note that one may en-
visage mixing by picking particles randomly and placing
them in new positions;'>'® although this procedure leads
to the classical-kinetics results, it does not mirror real
mixing closely.

In standard situations, laminar mixing of two liquids
gives rise to a structure of alternating striations, which
get thinner in time because of folding and squeezing. In
fact, thinning of lamellar arrangements of striations
occurs generally under mixing conditions and may be
found even in turbulent flow. The striation thickness dis-
tribution (STD) is random, its mean decreasing, in gen-
eral, exponentially with time.®

We use here the fact that the so-called warped-time
transformation® !4 allows one to map the diffusion prob-
lem in a steadily thinning array of striations onto a
diffusion problem in a static lamellar system.!%"'? This

7-11

allows us to implement our recent analytical results for
the static problem!? to investigate the 4+B— 0 reac-
tion under mixing, both in the case of infinite local reac-
tion rates and also for finite ones. Specifically, we
display the decay behavior under mixing and we deter-
mine the dependence of the overall decay rate on the
reacting species (concentrations, diffusion constants, lo-
cal reaction rates) and on the mixing procedure (squeez-
ing rate and STD). Furthermore, we determine the
characteristic crossover time from the initial regime
(dominated by fluctuations and mixing) to a fully mixed
situation.

We model mixing (following Refs. 7 and 9) by consid-
ering an array of parallel striations (say, along the x
axis), which is also squeezed in the x direction. This
model represents quite well both the local structure of a
mixed specimen and also its dynamics.’ If squeezing
makes the characteristic scale e times smaller each 6
seconds, then in the absence of reaction, full mixing is
achieved at a time 7, when the striation thickness be-
comes comparable to the intermolecular distances; for
6=1s, T= —0In10 "8 =18 s for initial length scales /o
of 1 cm.

Now the bimolecular irreversible reaction 4A+B— 0
in a system without external constraints can be de-
scribed by

aCA_ aCB
9 DPAca=R,

where c4(r,t) and cg(r,t) are the local concentrations of
reactants, and D is the diffusion constant. In standard
chemical kinetics R is often taken to be equal to kc4cg,
where x is the microscopic reaction rate coefficient. In
fact, this is only an approximation (see Ref. 12 for other
forms) and in general the situation is much more compli-
cated,'”'® since the reaction rate depends on the joint
probability to find one 4 and one B particle within the
reaction radius, a probability which in general does not
factorize as c4(r,t)cg(r,t). To fix the ideas we take
equal concentrations (say co==10%2 cm ~3) of reactants

=DAcg—R, 1)
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and set D equal to 10 ~° cm?/s, typical for aqueous solu-
tions (e.g., Ref. 19). In this case, assuming as usual
k =87nDrq, with a reaction radius ro= 10 "% cm, we have
k~10 "3 cm?/s.

Squeezing is modeled with the help of a velocity field
v. For reactions in moving liquids, Eq. (1) holds locally
in a system of coordinates moving together with the
liquid domain considered. The change from this moving
(Lagrangian) system of coordinates to the fixed (Euleri-
an) one is provided by the operator (called the material
derivative in Ref. 7)

D )
TR TR (2
which replaces the partial time derivative in Eq. (1).

For a parallel array of striations perpendicular to the
x axis the problem is essentially one dimensional; thus
only the x component of the velocity is significant. For a
continuous contraction this component depends only on
the location x, and is

v(ix)=—ax, 3)

with the squeezing rate being a=1/6. Using Egs. (2)
and (3) we can now rewrite the one-dimensional equiv-
alent of Eq. (1) as a pair of equations for q(x,t)
=c4(x,t) —cp(x,t) and for s(x,t) =c4(x,t)+cp(x,t).
Thus

Dqg _dq _ 989 _,98°q 4
D ot Fox Pl @)

and

2
Ds s _, 85 _p 0% ka3 ()

Dt Ot ax?x_ ax2 2

Note that the first equation is linear and depends on
q(x,t) only, and that the second one contains q as a pa-
rameter. Equations (4) and (5) allow now a straightfor-
ward analysis.

Let us consider first Eq. (4), which is also of great in-
terest by itself, because it describes the limiting case of
very fast reactions, k— oo, (For a discussion of the ex-
perimental significance of this assumption see Ref. 9, pp.
13 and 282ff.) For k— oo Eq. (5) reverts to a similar
form as Eq. (4). Under general conditions it follows that
s>=q? or s=|q| everywhere: The system consists of
domains occupied either by 4 or B particles; hence one
has

ca=qO0(q), cg=—q0(—¢q), 6)

with ©(x) being the Heaviside step function. Now by
the change of variables (warped-time transformation®:!4)

E=xexplatr), =% 0lexpQar)—1]. )

Equation (4) reduces to an ordinary diffusion equation

with partial, not material, derivatives:

8q _ 8%
il ®)

In Eq. (7) &€ and 7 are chosen so that £ and x coincide at
=1=0. Such a diffusion problem in the absence of
mixing was considered in Refs. 10 and 11. A straight-
forward procedure would now require the solution of Eq.
(8) for all possible initial conditions. We circumvent the
problem in that we consider directly ensemble-averaged
quantities, which we denote by (---),. In Ref. 13 we
have shown how to deal with this problem theoretically.
Here we have to pay attention to the fact that we need
also to average over x. Fortunately, all the spatial aver-
ages are the same when averaging over x or over ¢&:
(g Ce,t)) =(f(g(&1(£))))e, where f is an arbitrary
function of g only, since no singularities occur in the
change of variables from (x,t) to (£,7) and since the
variable 7 depends only on ¢ (but not on x). Further-
more both averages coincide with (f(g(x,?))). [or
(f(q(&,1(t)))).]. Because in Eq. (7) both sets of vari-
ables coincide at ¢t =0 the initial realization of the 4 and
B domains, g(x,0), is identical to q(£,0). Therefore,
paralleling Ref. 13, we can obtain c¢(z) =(|q(&,7)|) as
the solution of Eq. (8) with the initial condition
q(£,0)=q(x,0) and then revert from 7 to ¢ to get c(z).
Here we present a heuristic argument, which (up to con-
stants of order unity) leads to the same qualitative re-
sults as in Ref. 13 for the “long-time” (7>> 1) behavior.
Paralleling Ref. 3 we use scaling ideas and view 7 in
Eq. (8) as the time and & as the space variable. The
characteristic diffusion length &, in & space is then
§D~\f5_r_. At time 7 the profile of the concentrations is
smoothed out by diffusion on the scale &p, but fluctua-
tions on scales larger than &p survive. Thus, at time 7
the system can be viewed as consisting of independent
compartments of length £p, each compartment contain-
ing only the reactant that was initially in excess in this
part. This residual amount of reactant is of the order of
colé4 —&g|, where £4 and &g are the total initial widths
of the A and the B lamellae in the compartment con-
sidered. If £p>1y, the mean number of 4 and B stria-
tions inside a compartment of length &p is n=£&p/ly
each, the mean value of the difference &4 —¢&p is, of
course, zero, and the variance of this difference,
((£4—&p)?), is of the order of 2no?, where 2=S —L?2
is the variance in striation widths, L being the average
width and S the average square width of the striations.
In general >0, ie.,, S>L2 Then the average
amount of the residual reactant is

(g€ DD ~coll&s—Es)~col(Ea—E5) D',
and its average concentration,
c(@)~{q &) ) ~collEs —Es/ED ,
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is of the order of
1/2

%

12
(D7) ™4, 9)

__LZ

c(t)~co { S

The “time” 7 dependence, c~1t "4 is typical for

fluctuation-dominated kinetics in one-dimensional disor-
dered systems,?>!%!! and the dependence on co, L, and
S is as found by us in Ref. 13; in fact, a more detailed
theoretical analysis'? also gives the values of the numeri-
cal coefficients:

(q2(1))=c3(S—L>L " '@®zDr) "',
c(0)=2"g=eo(S— L)L (D7) TV,

On the other hand, the case =0 is special. Here
S =L?2, which corresponds to a strictly ordered system;
then the reactant concentration in each lamella decays
according to the same law. The solution may be found
from the diffusion equation in intervals with absorbing

boundaries. For large enough 7 the decay is exponential
in t

c(t) ={q & )|)~coexp(—n2D/L?). 10)

Substituting (z) (inverse warped-time transformation)
into Egs. (9) and (10) one obtains at long times

c(t) ~coexpl — (xD/2aL »)expQat )], (1)

i.e., the exponential of an exponential law (EE decay).
On the other hand, for a random situation one has an ex-

ponential decay:
1/2 —1/4
[2] cxp[—t—a]. (12)
a 2

S—L?

c(t)~
) Co I3

Both Eq. (11) and Eq. (12) set in only when the dif-
fusion length £p becomes comparable to L: This corre-
sponds to times of the order of To~In(2aL?/D)/2a
=680, i.e., for our choice of parameters to = 6 s.

We now get back to the general case where « is finite.
Then Eq. (6) holds only in the early reaction stages. We
now have to solve Eq. (5). In an ensemble-averaged sit-
uation (s) is independent of x. Therefore one gets by
averaging Eq. (5) over the ensemble of realizations,

d<S> _ _£ 2y 2
o 5 UsH—<(gD). (13)
We note that s is independent of x both in the initial
state, where (apart from the boundaries between the
domains) s(x,0) =co, and also in the late, fully mixed
states of the reaction. In both these limiting cases the re-
lation (s2)=(s)? is strict. In the intermediate regime
(since s is well behaved) (s2) and (s2) can differ only
by a factor of order of unity. We thus set §(z) ={(s)
=(s2'2 in Eq. (13) and obtain an ordinary differential

1944

equation for §(¢).

Now, as long as o2 does not vanish, one has, for times

larger than a few 6 units, {(g%(z)) =aexp(—ar), with a

being of the order of ¢§[(S —L?)/L1(D/a) =2, Setting

z=exp(— at) one obtains for § the Ricatti equation:
45 _ K o2 ax

dz 2az 2a

Using a standard method, see Ref. 20, we introduce the
auxiliary function

o(z) =exp [—j;z Mdz'

(14)

2az'

and get a Bessel equation for ¢. Then reverting to § and
using that § is bounded and real we obtain

§(z) =vazK,(xVaz/a)/Ko(xVaz [a) a1s)

where Ko and K, are modified Bessel functions, Eq.
(9.6.Dff of Ref. 21. Now the coefficient xva /a is large
and for moderately long times ¢, t < 2In(xva/a)/a, one
obtains from the asympotic (large argument) forms of
K;

§(z)=+az . (16)

This agrees with the former results for x— o. For
larger times ¢ > 2In(xva/a)/a the small-argument ex-
pansion of Eq. (15) gives

§(z) =—2/kalnz =2/xt , amn

which is the standard chemical-kinetics form. The
change from Eq. (16) to Eq. (17) occurs for arguments
around unity, ie., for times around 7T,, where
T,=2In(xva/a)/a. With our parameters discussed
above one has 7, =370=37 s for a very fast, almost
purely diffusion-controlled reaction. Note that T is
twice as large as 7, the full mixing time in the absence of
the reaction.

The behavior of the solution, Eq. (15), for different
values of x is shown in Fig. 1. All curves correspond to
the value of a=c$(S —L?)/L/4xD/a=10% cm ~¢ and
the values of x vary from 10 ~'® cm?3/s (slow, reaction-
controlled regime) to 10~'* cm?/s (fast, diffusion-
controlled reaction). One can easily see that the initial,
exponential behavior is universal. The crossover effects
at larger times are also quite obvious. For x=10"!3
cm?/s the crossover time T, is around half a minute and
c(T1)/c(0)~107"°, ¢(T|) being well outside experi-
mental detection means.

Let us also look at the exceptional case where o2 =0.
Evidently, we can expect an EE decay only for times
larger than To. For finite k, we again have to analyze
Eq. (13), now with {g?) expressed through Eq. (11).
Comparison of the terms on the right-hand side of Eq.
(13) shows that the EE decay may hold only up to times
around T, where now T, obeys coexpl— (zD/2aL?)
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FIG. 1. The analytical solution for the concentration decay.
The values of the local reaction rate coefficient are k=10 '8,
10717, 107'%,10 715, and 10 ~'3 cm?/s (top to bottom). Other
parameters are co=1022 cm 73, D=10"% cm?s, 6=1 s, and
S~L~1cm.

xexp(2aT>)1~1/xT>. With our values of parameters
T, is around 76 so that the region between T and T, is
quite small. Furthermore, for an a/most ordered system,
the EE decay requires that the fluctuations in L are very
small, so that ¢(¢) = coAL/L holds. For our parameters
this means AL/L~107"'0 je., atomically flat boun-
daries. We conclude that in reacting systems the fluc-
tuations of striation thicknesses are of great importance
and that mixing models neglecting these fluctuations
(e.g., the regular baker’s transformation) must be viewed
with suspicion.

Summarizing, mixing usually governs the initial stages
of the reaction and the standard, diffusion-controlled re-
gime is often reached quite late. Furthermore, the con-
centration fluctuations caused by the random nature of
mixing play a very important role: Neglecting these
fluctuations can lead to a drastic change in the decay be-
havior at short times.
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