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Evidence for Solitons in Hydrogen-Bonded Systems
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Langevin-type finite-temperature simulations show that soliton mobility in hydrogen-bonded chains is
a nonmonotonic function of temperature. In the temperature range of 170-240 K, soliton mobility ini-
tially increases, reaches a maximum at approximately 190 K, subsequently decreases to a minimum at
approximately 210 K, and then increases again. This behavior is in qualitative agreement with experi-
mental data for ice crystals in the same temperature range.

PACS numbers: 66.30.Dn, 05.40.+j, 87.22.Fy

There has recently been substantial interest in the
study of possible collective proton motion in hydrogen-
bonded systems. ' ' This interest has been largely mo-
tivated by the large number of organic as well as inor-
ganic substances that form chains, networks, as well as
solids utilizing hydrogen-bonding mechanisms. Ice and
hydrogen halides are the best known examples of inor-
ganic hydrogen-bonded solids, ' whereas proteins,
DNA, and other biological macromolecules are examples
of organic hydrogen-bonded materials. ' ' It is a well
established fact that protons are the dominant charge
carriers in hydrogen-bonded chains and that they move
more efficiently in the direction of hydrogen bonds than
in alternative directions. ' This efficiency in proton
transport has been associated in the case of proton
transfer across cellular membranes (proton pump) with
possible coherence features in the proton motion. ' '
The cooperative proton dynamics in the networks can be
directly attributed to the proton-proton interaction as
well as to the nonlinear nature of the hydrogen bond. In
the case of ice, for instance, a proton bonds covalently
with an oxygen atom (bond length approximately 1.0 A)
and forms a hydrogen bond with the adjacent oxygen
atom (bond length approximately 1.7 A). Because of
the symmetry of an isolated oxygen-proton-oxygen com-
plex the proton may also form a hydrogen bond with the
first oxygen and bond covalently to the second one. As a
result, the eA'ective proton potential has two symmetric
equilibrium positions separated by a potential barrier,
i.e., has the form of a double well. The properties of the
proton potential and the proton-proton interaction lead
very naturally to the association of possible coherence in
proton motion with the concept of topological solitons. '

A number of quasi-one-dimensional nonlinear models
have been proposed in order to study coherence of proton
motion in hydrogen-bonded chains. ' ' ' ' In the pres-
ent Letter we use a simple model for ionic defects that
captures all the essential physics and we report temper-
ature-dependent mobility results.

The nonlinear model consists of an alternating se-
quence of proton and ion masses [Fig. 1(a)]. The pro-
tons (dark circles) are placed in double-well potentials
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where m is the mass of the proton and co~ is the frequen-
cy of acoustic (proton) vibrations. The ion chain is de-
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FIG. 1. The proton potentials in a quasi-one-dimensional
hydrogen-bonded chain (a) are well approximated by sym-
metric double wells (b). An external (negative) electric field
eA'ectively breaks the symmetry of the hydrogen-bond potential
(c), and protons adjacent to the top of the barrier have dif-
ferent potential energies (d).

[Fig. 1(b)] of the form

V(u, ) = ep(1 —u,'/b ') ', (1)
where u~ is the displacement of the jth proton, cp is the
barrier height of the potential well, and b is the distance
from the local minima to the maximum of the proton po-
tential.

The proton motion in the chain is governed by the
Hamiltonian
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scribed by the Hamiltonian
r
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where M is the mass of the oxygen ion, Ao is the fre-
quency of a pseudo-optical branch, and Ql is the acous-
tic ion frequency. Protons and ions interact with

Hinteraction Z 2 Zwj (ttj2 — 2

J

where g is the strength of the interaction. As a result of
the interaction term, the double-well proton potential is

dynamically altered by the motion of the ions. For large
ion displacements the eA'ective barrier height is reduced

substantially, thereby permitting ion-assisted proton
motion.

The Hamiltonian for the entire chain is H Hp
+0 +0 t t Analytical solutions for the discrete
model can only be obtained in the continuum limit for
Op=0, and only for a characteristic velocity Up (ion
sound velocity). These solutions describe a hyperbolic-
tangent kink-shaped proton soliton that is producing and
carrying with it a sech -shaped ion deformation. ' For
v&vo the solutions do not change substantially. In the
case of ice crystals the dressed kinks and antikinks repre-
sent OH and H30+ defects, respectively. '

In order to study the defect motion at finite tempera-
tures the hydrogen-bonded chain is placed in a heat
reservoir' and a constant electric field (E) is turned on.
The electric field eAectively breaks the symmetry of the
proton double well [Fig. 1(c)]. The proton and ion equa-
tions of motion are then
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where y is a damping coefficient and f„(t) represents a
Langevin-type b-correlated Gaussian stochastic force
that acts on the nth ion:

(7)&f„(t)f„(t')& =2k' TMy&„„&(t—t') .

We cast the equations of motion (5) and (6) in dimen-
sionless form by choosing the time unit equal to 1.0214
x 10 ' s (frequency unit of 0.9787 x 10 ' s '), mass
unit equal to the proton mass, and unit of length equal to
1.0 A. We then integrate them numerically using the
fourth-order Runge-Kutta scheme. We typically use a
chain with 100 unit cells. The values of the physical pa-
rameters are comparable with experimental data as well
as other work in this field. ' We take ~=2.0 eV,
b =1.0 A, a =5.0 A, m =1.0 amu, M=17.0 amu, rpi
=5 87x10 '" s ' Q =1 80x10 ' s ' 0 =5 87
x10 ' s ', @=0.10 eV/A with the integration time
step dt typically taken equal to 0.05 time unit. Since
time discretization aA'ects the properties of the Langevin
forces in the numerical simulations, we use an ensemble
of Gaussian forces f„with variance equal to

(k, TMy/dt ) '". (8)
This choice of Gaussian width is compatible with the
fluctuation-dissipation theorem and time discretization. '

To ensure that the chain is at temperature T we use
the following procedure. Initially the chain is interacting
with the Langevin bath at temperature T with no soliton
present. We monitor the total kinetic energy of the ions
and protons in the chain, which after some initial fluc-
tuations relaxes to and maintains an average value equal
to kT per unit cell in accordance with the equipartition
theorem. Subsequently we use the analytic soliton solu-
tions' and introduce a soliton in the lattice by modifying

the displacements of a small number of protons and ions
around the defect center. We monitor the defect motion
over a temperature range of 170-240 K and fields in the
range of 100-200 kV/cm. ' The kink soliton accom-
panied by the ion deformation accelerates initially while
the temperature fluctuations produce small random devi-
ations in the proton and ion displacements. We register
the defect velocity at longer times when the kink-defor-
mation complex reaches a steady state moving with a
constant velocity.

In Fig. 2 we present the result of our numerical evalu-
ation of the defect mobility. We plot the terminal defect
velocities as a function of inverse temperature for two
different field values. We note that as the temperature
increases the defect mobility rises and peaks around 190
K. Subsequently it drops, reaches a minimum at approx-
imately 210 K, and then rises again. This behavior is
clear for these two field values presented here even
though there are differences in the details of the curves.
The nonmonotonic up-down-up tendency for this range
of temperatures seems to be a generic feature in the tem-
perature dependence of the soliton mobility and observed
for other field values (Fig. 3) and different barrier
heights.

The most distinct feature of the mobility-temperature
plots is the presence of two transition temperatures T,„
=190 K and T;„=210 K, where the defect velocity
reaches a maximum and minimum, respectively. Upon
comparing the simulated data with polycrystalline ice
data' (Fig. 2, inset) we observe in the latter the same
qualitative behavior: temperature-assisted mobility at
small temperatures and high temperatures with a very
distinct drop in the intermediate region. In addition to
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rier solely due to thermal Auctuations in this temperature
range. They can, however, transmit their additional
thermal energy to protons closer to the top of the barrier
which in turn can now cross over. In this temperature
range, due to the asymmetry in the potential well, proton
4 in Figs. 1(c) and 1(d) has on the average larger in-
direct impact to the motion of the soliton than proton 5
and as a result there is an indirect velocity assistance by
these outer-layer protons.

In Fig. 3 we show the ion defect width as a function of
1/T for a field value equal to 150 kV/cm and the corre-
sponding temperature-dependent velocity dependence for
the same field. In order to exclude contributions due to
purely thermal distortions, we define the defect width in

such a way as to include those ions whose displacement
lies within 65% of the maximum ion deformation caused
by the presence of the kink in the proton sublattice. We
note that the defect width, typified here by the average
ion defect width, is a sensitive function of the tempera-
ture. The peak in the width size in between the transi-
tion temperatures T;„and T,„signifies that outer-
layer protons and ions participate more in the temper-
ature-induced defect motion, in accordance with the pre-
vious physical explanation.

In this study we obtained numerically a very distinct
nonmonotonic temperature dependence for the soliton
mobility in hydrogen-bonded chains which we attribute
to a competition between field-induced biased proton
motion and temperature Iluctuations. ' Upon comparing
it with available conductivity data for ice we found re-
markable quantitative agreement in the transition-tem-
perature values and qualitative similarity in the corre-
sponding conductivity and defect-velocity curves. There
are, however, various limitations to this comparison. In
particular, the difference between the conductivity value
at T,„and T;„ is much more pronounced in the ice
data than in the simulated data. This difference can be
attributed to various factors, such as the particular
choice of electric-field values, ' the values of the param-
eters in the model such as the barrier height ~, the non-
linear coupling parameter g, and the spring constants,
the absence from the model of many-body effects, and
most importantly the real three-dimensional nature of
ice. Because of the latter, other conductivity channels,
such as orientational defects, ' are available to the real
hydrogen-bonded system and the temperature effects are
compounded. Furthermore, thermally activated defect
creation which dominates in ice in the high-temperature
regime' is not included in the present one-soliton model.
Even with these limitations we believe that the striking
similarity between simulations and ice data provides evi-
dence for the compatibility of the soitton picture with the
defects in a hydrogen-bonded network.
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