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Coupled Alfven Waves in a Quadrupole Magnetic Field and Mode Conversion
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Coupled Alfven waves propagating along a quadrupole magnetic field are studied. It is shown analyti-
cally that slow and fast Alfven waves mode couple due to the spatial modulation of the quadrupole mag-
netic field, and one Alfven mode can convert to another one. The process is analogous to a resonant
parametric mode coupling. The coupling coefficient depends on the ellipticity of the flux surface and
vanishes when the magnetic field is axisymmetric.

PACS numbers: 52.40.Db, 52.35.—g, 52.55.3d

It is of importance to study wave propagation in order
to understand the eff'ects of waves on rf heating, trans-
port, and stability in magnetically confined plasmas.
Especially, the propagation in nonuniform magnetic
fields such as those that occur in mirrors and helical sys-
tems is very interesting as it is associated with complex
problems in wave reflection and mode conversion.

In this Letter we study axial propagation of Alfven
waves in a quadrupole magnetic field analytically. This
study is motivated by an attempt to understand the ex-
perimental results on the mode conversion of Alfven
waves in GAMMA 10. ' We show here that two Alfven
modes, i.e., fast and slow waves, mode couple due to the
spatial modulation of a quadrupole magnetic field, and
one Alfven mode can convert to the other. The coupled-
mode equations between fast and slow waves via the spa-
tial quadrupole field modulation are derived. The cou-
pling coefTicient depends on the ellipticity of the flux sur-
face, and then vanishes when the magnetic field is axi-

symmetric. If we suppose the spatial quadrupole field
modulation to be a "virtual" mode with zero frequency,
we can see that the coupling process is analogous to a
resonant parametric mode coupling among the two
Alfven modes and a virtual mode and that e%cient mode
conversion takes place when a resonant condition with
respect to axial wave number among these modes is
satisfied. This is a new mechanism for mode conversion
of Alfven waves.

The starting point is the Maxwell wave equation given
by

VxVxE —(co/c) s E=O,
where e is the plasma dielectric tensor, which is calculat-
ed from a cold plasma model, co is the wave frequency,
and c is the light speed. When we use flux coordinates
(y, e,z), the magnetic field is expressed as B=Bb
=Vox VO, and the wave electric field as E =E~Vy

!
+EOVO+E, b in the covariant form. Then we obtain,
from Eq. (1),
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where co, is the cyclotron frequency, cop the plasma fre-
quency, and Vz the Alfven velocity. Here E, is neglect-

ed as E, «E~ and Eg when co —co« !Vy!, I.V. OI, and
(Vy Ve) appear in Eqs. (2) and (3) since the covariant
basis vectors Vy and VO are neither unitary nor orthogo-
nal.

We express the magnetic field line of a quadrupole
field by x(z) =o(z)xo and y(z) =z(z)yo. Here (xo,yo)
denotes the radial position at z =zo where the Aux sur-
face is circular. The xo and yo are expressed as xo
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=(2y/Bp) ' cosO and pp=(2y/Bp) 'i sinO, respectively,
and satisfy (x/n) + (y/r) =xp+yp =rp =2y/Bp,
where Bp=B(zp). Then IVyI, IVOI, and (Vy. VO) are
expressed as

IVyI =(2yBp) [h(z)+a(z)cos2O],

IVOI =(Bp/2y) [h(z) —a(z)cos2O],

(Vy. VO) = —Bpa(z) sin2O,

with h(z) = —,
' (I/o +1/z ) and a(z) = —,

' (I/cr —1/r )
We find that mode coupling with respect to the azimu-

thal mode number arises due to the O dependence of

IVyl IVOI and (Vy VO) in Eqs. (2) and (3). One
mode with the mode number m couples to excite other
modes with m+ 2 through the quadrupole magnetic-field
component with the mode number of + 2. If we Fourier
expand E~ and Ee as

E,(y, O, z) = g F (y, z)exp(imO),

E,(y, O, z) = g G (y, z)exp(imO),

(7)

!
we obtain coupled-mode equations for Fourier com-
ponents F and G as follows:
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Xm =G~ —2i yF~, Y~ = —G~ —2iyF (io)

and Y denote left-hand and right-hand circularly
polarized wave components, respectively. Then Eqs. (8)
and (9) are rewritten as follows:

r

p X +kX+ 2p Y+2d d 2 d d
dz dz '

dz dz

+2pkT Y~+2 =0,

d d 2 d d
p Y~ +kF Y~+ 2P Xm —p

dz dz dz dz

+2pkTX~-p =0,

where

p(z) =h (z) [Bp/8(z)] =
2 (e+ 1/e),

2P(z) =a(z) [8 /8(z) ] = —,
' (e —1/e),

and e = r/a.
We now restrict ourselves to the Alfven-wave propaga-

tion along the quadrupole magnetic field and treat the
limit where V=z8/Bz, for simplicity. If we define X
and Y by

with

k, =(ro/Vz) (p+ro/ro„)/[I —(ro/ro„)'],

kF' = (ro/Vg ) '(p —ro/co„)/[ I —(Co/ro„) '],
kT = ( /Vrouw ) '/[I —(co/ro„) ] .

Equations (11) and (12) describe the mode coupling be-
tween X and Y +2 (or between X -2 and Y ) due to
the spatial modulation of the quadrupole magnetic field.
If the magnetic field is axisymmetric, the coupling
coefficient P vanishes as e =1 (lT=r), and then X and
Y +2 decouple with each other.

In order to solve Eqs. (11) and (12) analytically, we
consider the Alfven-wave propagation in a weak period-
ic quadrupole-field mirror described by a(z) =1 —e
xcos(kpz) and z(z) =1+ecos(kpz) with e«1. Here e
and ko are the amplitude and axial wave number of the
quadrupole-field modulation, respectively. For e«1,
Bp/8(z) = 1, h(z) = 1, and a(z) = 2ecos(kpz). Then
we have p(z) =1 and p(z) =ecos(kpz). Using these
relations, we obtain the following coupled equations be-
tween the m = —I slow wave X I (—=X) with left-hand
polarization and the m =+1 fast wave Y+I (—= Y) with
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right-hand polarization as follows:

d'
2+ k, X+2e cos(kpz)d dY

8z Jz Az

decrease of the fast- (slow-) wave amplitude. Then we

can see that these solutions express the mode conversion
between the slow and fast waves and satisfy a conserva-
tion relation given by

+kT cos(kpz) Y =0, (14)
kF I

Ypl' =kF
I
YI'+ k, IX I'. (24)

d dX+kF Y+ 2s cos(kpz )
dz2 dz Oz

+ kT cos(kpz)X =0. (15)

+8[k (k kQ) kT]X(k kQ),

with D, (k) =k, —k and DF(k) =kF —k .
X(k+ kp) can be approximated as follows:

(i7)

Here

D, (k+kp)X(k+kp) =s[k(k+kp) —kT] Y(k), (18)

D (k kp)X(k kp) =8[k (k kp) kT'] Y(k), (19)

since Y(k ~ 2kp) is of the higher order to be neglected.
Substituting Eqs. (18) and (19) into Eq. (17), we obtain
the following parametric dispersion equation:

[k(k+ kp) —k'] ' [k(k —kp) —k'] '
D, (k+ kp) D, (k —kp)

(20)

We can solve Eq. (20) under the assumption of the reso-
nant condition kp =k, —kF. For k =kF, DF(k) =0,
D, (k+kp)=0, and D, (k —kp) is oA resonant. Then
neglecting D, (k —kp), we obtain the eigenvalue of k as
follows:

k =kF + A, 5 =c(kT —k, kF)/2(k, kF) ' (2i)

Propagating coupled solutions are approximately given

by

Y = Yp cos (hz )exp (ikFz ),
X=i (kF/k, ) 'I'Yp sin(az)exp(ik, z),

(22)

(23)

where Yo is the wave amplitude of the fast wave in the
absence of the slow wave. Equations (22) and (23) show
that the slow- (fast-) wave amplitude increases with the

These equations are analogous to parametric coupled-
mode equations, when we suppose the spatial modula-
tion of the quadrupole magnetic field, i.e. , 2scos(kpz), to
be a virtual wave with zero frequency and the axial wave

number ko.
Fourier transforming Eqs. (14) and (15), we obtain

D (k)X(k) =s [k(k+kp) kT] Y(k+kp)

+8[k(k —k p) —kT] Y(k —kp),

DF(k) Y(k) =e[k(k+kp) —kT]X(k+kp)

The relation (24) is analogous to the Manley-Rowe rela-
tion. It can be also shown that the efficiency of the mode
conversion is significantly reduced if the axial wave num-

ber k is far from the resonant condition.
We now compare the present analytical results on the

mode conversion of Alfven waves with the experimental
results on the polarization reversal of Alfven waves ob-
served in GAMMA 10. ' In the experiments, the
m =+1 fast wave is excited in the axisymmetric central
cell and observed to be right-hand polarized in a core re-
gion. The wave field observed in the anchor cell with a

quadrupole magnetic field is left-hand polarized in the
core region and strong ion heating in the anchor cell is
also observed, which is supposed to be due to the funda-
mental ion-cyclotron-resonance heating. Therefore, the
wave observed in the anchor cell is considered to be the
m = —

1 slow wave. Gn the other hand, when the
m = —

1 slow wave is excited in the central cell, the wave
field with right-hand polarization and no ion heating are
observed in the anchor cell. From these results, the ex-
istence of an efficient mode conversion is strongly sug-
gested. The present analyses show that the rn =+1 fast
(m = —

1 slow) wave can mode convert to the m = —
1

slow (m =+1 fast) wave due to the spatial modulation
of the quadrupole magnetic field, in agreement with the
experimental observations. Then we can conclude that
the observed polarization reversal of Alfven waves results
from the mode conversion from the m = + 1 fast
(m = —

1 slow) wave to the m = —1 slow (m =+1 fast)
wave.

Recently, several experimental works on the mode
conversion of Alfven waves have been reported.
These experiments have been done in axisymmetric mir-
ror devices. However, the present mode conversion is in-
duced by the quadrupole magnetic field and then does
not occur when the magnetic field is axisymmetric.
Therefore, we note that this is a new mechanism for the
mode conversion of Alfven waves.

In summary, we studied coupled Alfven waves propa-
gating in a quadrupole magnetic field analytically. We
showed that slow and fast Alfven waves mode couple due
to the spatial modulation of the quadrupole field and
that one Alfven mode can mode convert efficiently to the
other through the process analogous to the resonant
parametric mode coupling. The present analyses on the
mode conversion of Alfven waves can reasonably explain
the experimental results on the polarization reversal of
Alfven waves in GAMMA 10 and validate the mode-
conversion mechanism proposed in Ref. 1.
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